
MPICH: Status and Upcoming Releases
http://www.mpich.org

Yanfei Guo, Ken Raffenetti, Hui Zhou and Rajeev
Thakur

Assistant Computer Scientist

Argonne National Laboratory

MPICH turns 29

Tianhe
MPI

MPICH

Intel
MPI

Sunway
MPI

Cray
MPI

Microsoft
MPI

MVAPICH

MPE PETSc

MathWorks

HPCToolkit

TAU

Totalview

DDT

ADLB

ANSYS

ParaStation
MPI

FG-
MPI

RIKEN
MPI

The MPICH Project

• Funded by DOE for 28 years

• Has been a key influencer in the adoption of MPI

• First/most comprehensive implementation of every

MPI standard

• Allows supercomputing centers to not compromise on

what features they demand from vendors

• DOE R&D100 award in 2005 for MPICH

• DOE R&D100 award in 2019 for UCX (MPICH internal comm.

layer)

• MPICH and its derivatives are the world’s most widely used

MPI implementations

MPICH is not just a software
It’s an Ecosystem

MPICH Adoption in Exascale Machines

§ Aurora, ANL, USA (MPICH)

§ Frontier, ORNL, USA (Cray MPI)

§ El Capitan, LLNL, USA (Cray MPI)

§ Binary compatibility for MPI implementations
– Started in 2013

– Explicit goal of maintaining ABI compatibility between multiple MPICH
derivatives

– Collaborators:
• MPICH (since v3.1, 2013)

• Intel MPI Library (since v5.0, 2014)

• Cray MPT (starting v7.0, 2014)

• MVAPICH2 (starting v2.0, 2017)

• Parastation MPI (starting v5.1.7-1, 2017)

§ Open initiative: other MPI implementations are welcome to join

§ http://www.mpich.org/abi

MPICH ABI Compatibility Initiative

http://www.mpich.org/abi

MPICH Distribution Model

§ Source Code Distribution
– MPICH Website, Github

§ Binary Distribution through OS Distros
and Package Managers
– Redhat, CentOS, Debian, Ubuntu,

Homebrew (Mac)

§ Distribution through HPC Package
Managers
– Spack, OpenHPC

§ Distribution through Vendor Derivatives

MPICH Releases

§ MPICH now aims to follow a 12-month cycle for major releases (4.x), down from
18 months previously
– Minor bug fix releases for the current stable release happen every few months

– Preview releases for the next major release happen every few months

– Branching off when beta is released (feature freezed)

§ Current stable release is in the 3.4.x series
– mpich-3.4.2 was in May 2021

– mpich-3.4.3 coming soon

§ Upcoming major release is in the 4.0 series
– mpich-4.0b1 released this week

– rc1 and GA release coming soon

MPICH Layered Structure

7

CH4

MPI Layer

CH4 Core

Netmods
OFI UCX

Shmmods
POSIX XPMEM

Architecture-specific
Collectives

Active Message
Fallback

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-independent
Collectives

Derived Datatype
Management

Group
Management

GPU Support
Fallback

GPU IPC

CUDA HIP OneAPILibfabric UCX

Yaksa
Datatype

Engine
MPL HWLOC IZEM

CH4 Design Goals

Provide default shared memory
implementation in CH4

§ Disable when desirable

– Eliminate branch in the critical path

– Enable better tuned shared memory
implementations

– Collective offload

High-Level Netmod API
§ Give more control to the network

• netmod_isend
• netmod_irecv
• netmod_put
• netmod_get

§ Fallback to Active Message based
communication when necessary
• Operations not supported by the

network

“Netmod Direct”
§ Support two modes

• Multiple netmods
• Retains function pointer for flexibility

• Single netmod with inlining into device layer
• No function pointer overhead

MPI

CH4

Netmod

OFI UCX

Minimal Per Process Data
• Global address table

• Contains all process addresses
• Index into global table by translating

(rank+comm)

Partnership with Intel, Mellanox, Cray,
RIKEN, NVIDIA and AMD

1342

215 143 129 44
253 221 147 141 59

0

500

1000

1500

MPICH/CH3MPICH/CH4
(default)

MPICH/CH4
(+no errors)

MPICH/CH4
(+no thread

check)

MPICH/CH4
(+ipo)

In
st
ru
ct
io
n
Co

un
ts

Instruction Counts

MPI_Put MPI_Isend

Lower Overheads = Better Strong Scaling

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Es
tim

at
ed

 E
ffi

ci
en

cy

Grid Points Per MPI Rank Bucket

MPICH/CH4 N=5

MPICH/Original
N=5

MPICH/CH4 N=7

MPICH/Original
N=7

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

200

400

600

800

1000

1200

1400

512 (368) 1024 (184) 2048 (90) 4096 (45) 8192 (23)

Pe
rc

en
ta

ge
 S

pe
ed

up

Ti
m

es
te

ps
pe

r S
ec

on
d

Number of nodes (atoms per core)

MPICH/CH4 Eff iciency
MPICH/Original Efficiency
MPICH/CH4 Speedup

BGQ LAMMPS Strong Scaling MPICH/CH4 vs
MPICH/OriginalNek5000 Mass−Matrix Inversion Efficiency

Supporting GPU in MPI Communication (1/3)

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Native GPU Data Movement
– Multiple forms of “native” data movement
– GPU Direct RDMA is generally achieved through

Libfabrics or UCX (we work with these libraries to enable
it)

– GPU Direct IPC is integrated into MPICH
• GPU Fallback Path

– GPU Direct RDMA may not be available due to system
setup (e.g. library, kernel driver, etc.)

– GPU Direct IPC might not be possible for some system
configurations

– GPU Direct (both forms) might not work for
noncontiguous data

– Datatype and Active Message Support

NVIDIA
CUDA

AMD
HIP

Intel
OneAPI

POC: Yanfei Guo
<yguo@anl.gov>

CH4

MPI Layer

CH4 Core

Netmods
OFI UCX

Shmmods
POSIX XPMEM

Architecture-specific
Collectives

Active Message
Fallback

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-independent
Collectives

Derived Datatype
Management

Group
Management

GPU Support
Fallback

GPU IPC

Supporting GPU in MPI Communication (2/3)

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

• MPICH support for using complex noncontiguous
buffers with GPU
– Buffer with complex datatype is not directly supported by the

network library
– Packing complex datatype from GPU into contiguous send buffer
– Unpacking received data back into complex datatype on GPU

• Yaksa: A high performance datatype engine
– Used for internal datatype representation in MPICH
– Front-end provide interface for MPI datatypes
– Multiple backend to leverage different hardware for datatype

handle
– Generated GPU kernels for packing/unpacking

Yaksa Datatype Engine

Vector

Indexed

Struct

MPI Datatypes

…

Datatype
Frontend

CPU
Backend

CUDA
Backend

HIP
Backend

ZE*
Backend

CPU

NVIDIA
GPU

AMD
GPU

Intel
GPU

0

2

4

6

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

Ti
m

e
(m

se
c)

Number of integers in the Z dimension

Yaksa H2H Yaksa D2D

Supporting GPU in MPI Communication (3/3)

The GPU support in MPICH is developed in close collaboration with vendor partners
including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Supporting Multiple GPU Node
– Data movement between GPU devices
– Utilizing high bandwidth inter-GPU links (e.g. NVLINK)

• GPU-IPC Communication via Active Message
– Create IPC handles for GPU buffers
– Send IPC handles to target process
– Receiver initiate Read/Write using the IPC handle

• Fallback Path in General SHM Active Message
– When IPC is not available for the GPU-pair

AM SEND

GPU

Memory

Src Buffer

MPICH SHM Communication Layer

IPC Handle

GPU

Memory

Dest Buffer

Incoming Msg

IPC Handle

Review of Major MPICH 3.4 Features

1. Extending CUDA Awareness and Support for other GPUs (partnership with
Mellanox, NVIDIA, AMD, Intel and Cray)

– Multiple Vendors Support: NVIDIA, AMD and Intel

2. Multi-VCI communication (partnership with Intel)
– Utilizing network hardware parallelism

3. Collective Selection Framework (partnership with Intel)
– A Framework supporting different strategies of collective algorithm selection

4. Datatype engine extensions and optimizations
– Optimized code paths for common datatype compositions

POC: Ken Raffenetti
<raffenet@mcs.anl.gov>

Focuses in MPICH 4.0 Release Series

• Full implementation of MPI-4.0 specification
– MPI Sessions

– Partitioned Communications

– Persistent Collectives, Tool Events, Large Count, and more

– https://www.mpi-forum.org/docs/

• Enhance GPU and threading support
– Make the support more stable and user experience smoother

– Push the production performance to our research projection

POC: Hui Zhou
<zhouh@anl.gov>

Enhanced GPU Support

•MPICH is fully GPU-aware since 3.4.0

• But …
– GPU initialization cost, GPU pointer query cost, …

– GPU testing takes 8 hours! Not fully green.

– Need GPU-aware API

• Enhancements
– MPIR_CVAR_ENABLE_GPU=0 should recover full CPU-only performance

– Full GPU CI testing, green!

– GPU direct IPC for NVIDIA and Intel GPUs

• In Progress
– GPU IPC for AMD GPUs, …

Compute Node

GPU

GPU MEM

GPU

GPU MEM
HOST
MEMCPU

NIC

Compute Node
GPU

GPU MEM

GPU

GPU MEMHOST
MEMCPU

NIC

Better Threading Support

• Enable strong scaling with multiple VCI (virtual communication interface)
• Multi-VCI for Point-to-point implemented in 3.4.0
• Multi-VCI for RMA added in 4.0a1
• Multi-VCI for Active Messages added in 4.0b1

• Parallel semantics based on
communicator/rank/tag

C Binding Generation

• + 3,000 lines of Python script
• - 40,000 lines of C

• API extracted from mpi-standard repo

• Generates –
– Profiling interface
– API documentation
– Parameter validation
– Handle object pointer conversion

• Fortran binding generation will be updated to Python and unified
– F08 binding generation 80% done

MPI Session

• Libraries to keep MPI usage
opaque to user

• Basic implementation
internally initializes “world” in the
first MPI_Session_init/MPI_Init

• World initialization to delayed to the creation of first world-comm

• Fully correct implementation need to support first-class dynamic processes

Partitioned Communication

• In-between two-sided (pt2pt) and one-sided (RMA) communication

• Basic implementation done, plenty of optimization opportunity ahead!

Large Count API

• A large count version for every API that has a ”count” or “displacement” argument
(guess how many?)

• No more work-arounds!

• API use MPI_Count, internally we use MPI_Aint where-ever possible

MPI_T Events

• Callback-based interface for tools to get information on internal library events
• Infrastructure and example events complete. We welcome community feedback to

define useful events!

MPICH 4.0 Roadmap

•MPICH-4.0a1 released in February
– Majority of the MPI-4.0 API implemented

•MPICH-4.0a2 released in June
– Synchronized to MPI Forum meeting with the expected

official ratification of MPI-4.0 standard
– Full implementation of MPI-4.0 API
– More stable GPU/threading support

•MPICH-4.0b1 released this week
– 4.0.x branch is created

• GA release in late 2021/early 2022

• Critical bug fixes are backported to 3.4.x

V3.4
V3.4.1

Nov ‘20 Jan ‘21

V4.0a1

Feb ‘21

V4.0a2

Jun ‘21

V4.0b1

Nov ‘21

V4.0

MPICH 4.1 Plans (RFC)

• Enhancing GPU Support
– Collective, RMA

– Stream awareness extensions

• Extend PMI 1 and PMI 2 interface / Enhance hydra
– PMI 1 ages very well and still kicking!

– Support PMIx capability with backward compatibility and simplicity of PMI 1 and 2

– Enhance hydra with tree-launching capability

• Improve useability
– Explore MPIX space for more natural/direct semantics

– Fixing issues – we shrank outstanding issus from ~450 down to 200 this year! We all cut it in half again next year.

Programming Models and Runtime Systems Group

– Yanfei Guo (assistant scientist)

– Sudheer Chunduri (assistant scientist)
– Travis Koehring (predoc)

– Rob Latham (software developer)
– Ken Raffenetti (software developer)
– Rajeev Thakur (senior scientist)

– Xiaodong Yu (postdoc)

– Hui Zhou (software developer)

– Marius Horga (M.S.)
– John Jenkins (Ph.D.)
– Feng Ji (Ph.D.)
– Shintaro Iwasaki (Ph.D.)
– Ping Lai (Ph.D.)
– Palden Lama (Ph.D.)
– Yan Li (Ph.D.)
– Huiwei Lu (Ph.D.)
– Jintao Meng (Ph.D.)
– Ganesh Narayanaswamy

(M.S.)
– Qingpeng Niu (Ph.D.)
– Poornima Nookala (Ph.D.)

– Brian Skjerven (Ph.D.)
– Rajesh Sudarsan (Ph.D.)
– Hengjie Wang (Ph.D.)
– Xi Wang (Ph.D.)
– Lukasz Wesolowski (Ph.D.)
– Shucai Xiao (Ph.D.)
– Chaoran Yang (Ph.D.)
– Rohit Zambre (Ph.D.)
– Boyu Zhang (Ph.D.)
– Xiuxia Zhang (Ph.D.)
– Xin Zhao (Ph.D.)

Current and Recent Students

– Ashwin Aji (Ph.D.)
– Abdelhalim Amer (Ph.D.)
– Md. Humayun Arafat (Ph.D.)
– Seonmyeong Bak (Ph.D.)
– Alex Brooks (Ph.D.)
– Adrian Castello (Ph.D.)
– Yanhao Chen (Ph.D.)
– Dazhao Cheng (Ph.D.)
– James S. Dinan (Ph.D.)
– Piotr Fidkowski (Ph.D.)
– Huansong Fu (Ph.D.)
– Priyanka Ghosh (Ph.D.)
– Sayan Ghosh (Ph.D.)
– Ralf Gunter (B.S.)
– Jichi Guo (Ph.D.)
– Yanfei Guo (Ph.D.)

– Ziaul Haque Olive (Ph.D.)
– Kaiming Ouyang (Ph.D.)
– David Ozog (Ph.D.)
– Renbo Pang (Ph.D.)
– Nikela Papadopolou (Ph.D.)
– Sreeram Potluri (Ph.D.)
– Sarunya Pumma (Ph.D.)
– Li Rao (M.S.)
– Gopal Santhanaraman (Ph.D.)
– Thomas Scogland (Ph.D.)
– Min Si (Ph.D.)
– Shunpei Shiina (M.S.)

– Pavan Balaji (senior scientist)
– Abdelhalim Amer (assistant scientist)
– Neelima Bayyapu (postdoc)
– Wesley Bland (postdoc)
– Darius T. Buntinas (developer)
– Giuseppe Congiu (postdoc)
– James S. Dinan (postdoc)
– Huansong Fu (predoc)
– David J. Goodell (developer)
– Ralf Gunter (research associate)

– shintaro Iwasaki (postdoc)
– Huiwei Lu (postdoc)
– Kavitha Madhu (postdoc)
– Lena Oden (postdoc)
– Antonio Pena (postdoc)
– Min Si (assistant scientist)
– Sangmin Seo (assistant scientist)
– Min Tian (visiting scholar)
– Yanjie Wei (visiting scholar)
– Yuqing Xiong (visiting scholar)

Past Staff MembersCurrent Staff Members
– Jian Yu (visiting scholar)
– Junchao Zhang (postdoc)
– Xiaomin Zhu (visiting scholar)

Thank you!

• https://www.mpich.org

• Mailing list: discuss@mpich.org

• Issues and Pull requests: https://github.com/pmodels/mpich

• Weekly development call every Thursday at 9am (central): https://bit.ly/mpich-dev-call

https://www.mpich.org/
mailto:discuss@mpich.org
https://github.com/pmodels/mpich
https://bit.ly/mpich-dev-call

Backup Slides

26

Collective Selection Framework

• Choose Optimal Collective Algorithms
– Optimized algorithm for certain communicator size, message size

– Optimized algorithm using HW collective support

– Making decision on each collective call

• Pre-generated Decision Tree
– JSON file describing choosing algorithms with conditions

– JSON file created by profiling tools

– JSON parsed at MPI_Init time and applied to the library

Contributed by Intel (with some minor help from Argonne)

New Collective Infrastructure

• Thanks to Intel for the significant work on this infrastructure

• Two major improvements:
– Dependency-based scheduling

– C++ Template-like structure (still written in C)
• Allows collective algorithms to be written in template form

• Provides “generic” top-level instantiation using point-to-point operations

• Allows device-level machine specific optimized implementations (e.g., using triggered operations for OFI or HCOLL
for UCX)

– Several new algorithms for a number of blocking and nonblocking collectives (performance tuning still
ongoing)

Contributed by Intel (with some minor help from Argonne)

