
MPICH: Status and Upcoming Releases
http://www.mpich.org

Yanfei Guo

Assistant Computer Scientist

Argonne National Laboratory

MPICH turns 30

Tianhe
MPI

MPICH

Intel
MPI

Sunway
MPI

Cray
MPI

Microsoft
MPI

MVAPICH

MPE PETSc

MathWorks

HPCToolkit

TAU

Totalview

DDT

ADLB

ANSYS

ParaStation
MPI

FG-
MPI

RIKEN
MPI

The MPICH Project

• Funded by DOE for 30 years
• Has been a key influencer in the adoption of MPI

• First/most comprehensive implementation of every
MPI standard

• Allows supercomputing centers to not compromise
on what features they demand from vendors

• DOE R&D100 award in 2005 for MPICH
• DOE R&D100 award in 2019 for UCX (MPICH internal

comm. layer)
• MPICH and its derivatives are the world’s most widely

used MPI implementations
• Adoption in US Exascale Systems

Aurora, ANL, USA (MPICH)
Frontier, ORNL, USA (Cray MPI)
El Capitan, LLNL, USA (Cray MPI)

MPICH is not just a software
It’s an Ecosystem

§ Binary compatibility for MPI implementations
– Started in 2013

– Explicit goal of maintaining ABI compatibility between multiple MPICH
derivatives

– Collaborators:
• MPICH (since v3.1, 2013)

• Intel MPI Library (since v5.0, 2014)

• Cray MPT (starting v7.0, 2014)

• MVAPICH2 (starting v2.0, 2017)

• Parastation MPI (starting v5.1.7-1, 2017)

§ Open initiative: other MPI implementations are welcome to join

§ http://www.mpich.org/abi

MPICH ABI Compatibility Initiative

http://www.mpich.org/abi

MPICH Distribution Model

§ Source Code Distribution
– MPICH Website, Github

– BSD-2 compatible license

§ Binary Distribution through OS Distros
and Package Managers
– Redhat, CentOS, Debian, Ubuntu,

Homebrew (Mac)

§ Distribution through HPC Package
Managers
– Spack, OpenHPC

§ Distribution through Vendor Derivatives

MPICH Releases

§ MPICH typically follows a 12-month cycle for major releases (3.x/4.x), barring
some significant releases
– Minor bug fix releases for the current stable release happen every few months

– Preview releases for the next major release happen every few months

§ Current stable release is in the 4.0.x series
– mpich-4.0.3 released on 11/08/2022

§ Upcoming major release is in the 4.1 series
– mpich-4.1b1 released last week

– RC1 and GA release coming soon

Following and Participating MPICH Development

• MPICH main repo on Github at
https://github.com/pmodels/mpich

• Join our development call every Thursday at 9am
(central): https://bit.ly/mpich-dev-call

• Submit a Github issue
– Github issue is the preferred way for bug reports

https://github.com/pmodels/mpich
https://bit.ly/mpich-dev-call

MPICH Layered Structure

7

CH4

MPI Layer

CH4 Core

Netmods
OFI UCX

Shmmods
POSIX XPMEM

Architecture-specific
Collectives

Active Message
Fallback

Abstract Device Interface (ADI)

MPI Interface
Application

Machine-independent
Collectives

Derived Datatype
Management

Group
Management

GPU Support
Fallback

GPU IPC

CUDA HIP OneAPILibfabric UCX

Yaksa
Datatype

Engine
MPL HWLOC

GPU Stream
Support

Goal of CH4 Device

§ Lightweight Layer for High-Performance Hardware
– Getting out-of-the way of high-performance hardware

– Minimizing software overhead for HW supported operations.

§ High Scalability
– Minimizing per-process footprint

– Scalable MPICH internal data structures

§ Optimized Multi-threaded Performance
– Reduce contentions on multi-threaded MPI

– Multiple virtual communication interfaces (VCIs)

§ Support for Heterogeneous Hardware Architecture
– GPU Support

8

MPICH-4.0 – CH4 device

• Replacement for CH3 as default option, CH3 still maintained, but
new features are implemented only in CH4

• Low-instruction count communication
– Ability to support high-level network APIs (OFI, UCX)
– E.g., tag-matching in hardware, direct PUT/GET communication

• VCI feature to support high thread concurrency
– Improvements to message rates in highly threaded environments

(MPI_THREAD_MULTIPLE)
– Support for multiple network endpoints (THREAD_MULTIPLE or not)

• GPU-aware
– CUDA, HIP, ZE
– IPC, GPU Direct RDMA

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0

200

400

600

800

1000

1200

1400

512 (36 8) 1024 (1 84) 2048 (9 0) 4096 (4 5) 8192 (2 3)

Pe
rc

en
ta

ge
 S

pe
ed

up

Ti
m

es
te

ps
 p

er
 S

ec
on

d

Number of nodes (atoms per core)

MPICH/CH4 Efficiency
MPICH/Original Efficiency
MPICH/CH4 Speedup

-5
0
5

10
15
20
25
30
35
40
45
50
55

4 16 64
256

102
4

409
6

163
84

655
36

M
es

sa
ge

s/
s (

x
10

6)

Message size (B)

MPI_THREAD_SINGLE

MPI_THREAD_MULTIPLE with MPI_COMM_WORLD

MPI_THREAD_MULTIPLE with separate COMMs
The CH4 in MPICH is developed in close collaboration with vendor partners including
Including AMD, Cray, Intel, Mellanox and NVIDIA

Full support for MPI-4 standard

• MPI Forum released MPI 4.0 standard on June 9, 2021

• Major additions in MPI 4.0
– Solution for “Big Count” operations

• Use, e.g. MPI_Send_c with MPI_Count argument.

– Persistent Collectives
• For example, MPI_Bcast_init

– Partitioned Communication
• Splitting either send buffers or receive buffers into partions
• Allow partial data transfers

– MPI Sessions
• A mother of all possibilities

– New tool interface for events
• Callback-driven event information

– More: improved error handling, better MPI_Comm_split_type,
standardized info hint assertions, improved info usages

The development is done in close collaboration with vendor partners including
Including AMD, Cray, Intel, Mellanox and NVIDIA

MPI+THREAD

• Previously, dismal performance with
MPI_THREAD_MULTIPLE

• Implicit VCI mapping in MPICH-4.0
with potential performance

• Advice to users
– Use different communicators

– Same communicator, use different tags
and set hints

• Explicit VCI coming in MPICH-4.1

MPI+GPU

The GPU support in MPICH is developed in close collaboration with vendor
partners including Including AMD, Cray, Intel, Mellanox and NVIDIA

• Native GPU Data Movement
– Multiple forms of “native” data movement
– GPU Direct RDMA is generally achieved through Libfabrics

or UCX (we work with these libraries to enable it)
– GPU Direct IPC is integrated into MPICH

• GPU Fallback Path
– GPU Direct RDMA may not be available due to system

setup (e.g. library, kernel driver, etc.)
– GPU Direct IPC might not be possible for some system

configurations
– GPU Direct (both forms) might not work for noncontiguous

data
– Datatype and Active Message Support
– New GPU-aware datatype engine

0

1

2

3

4

5

6

7

8

0 1 2 4 8 16 32 64
128

256
512

1024
2048

4096
8192

16384

La
te
nc
y
(u
s)

Message Size (B)

OSU_LATENCY internode fastpath (w/
gdrcopy)

H2H D2D D2H H2D

On Summit with MPICH 4.0, UCX 1.11.0, CUDA 11.4.2, GDRCOPY 2.3

MPICH 4.1 Release Series

• MPIX Stream prototype

• Standalone PMI Library

• MPICH Testsuite
– Comprehensive testsuite for MPI implementations in general

– Now available as separate release target

• Accelerate CI builds
– CI is key for productivity, we do hundreds of CI builds daily

– Projects are getting more complex, and slower to build

– Option to prebuild submodules, ./autogen.sh -quick to avoid repeated rebuild

MPIX Stream – the missing link in MPI+X

• MPI+Thread
– MPI is a process execution model

– “When a thread is executing one of these routines, if another concurrently running thread also makes an MPI call, the outcome will be
as if the calls executed in some order”

– If application expresses parallelism "correctly", implementations can reserve concurrency

– How do you do so when MPI does not have thread concept? That is a good question!

• MPI+GPU
– Accelerator runtime introduces yet another execution context, e.g. CUDA stream

– It is an always async, serial execution context

– It is critical for minimizing the CPU/GPU launching and synchronization cost

– How do we pass the GPU stream into MPI?

– What happens when we mix conventional MPI calls with MPI operations enqueued to a GPU stream?

MPIX Stream Proposal

§ MPIX_Stream identifies a serial execution context

§ info can be MPI_INFO_NULL, identifies a generic thread context

§ In the case of threads, it is the application’s responsibility to ensure access to an
MPIX_Stream is serialized. Essentially MPI_THREAD_SERIAL, but at the object-level,
rather than all of MPI.

15

int MPIX_Stream_create(MPI_Info info, MPIX_Stream *stream)
int MPIX_Stream_free(MPIX_Stream *stream)

Hui Zhou, Ken Raffenetti, Yanfei Guo, and Rajeev Thakur. 2022. MPIX Stream: An
Explicit Solution to Hybrid MPI+X Programming. In Proceedings of the 29th European
MPI Users' Group Meeting (EuroMPI/USA'22).

Stream communicator

§ Stream communicator is a communicator with local streams attached.

§ MPIX streams are local, but communications are between pairs of them

§ Otherwise, synchronization is unavoidable at receiver or sender.

§ It okay for stream to be MPIX_STREAM_NULL.

§ Conventional communicators are the same as stream communicators with
MPIX_STREAM_NULL on every process.

16

int MPIX_Stream_comm_create(MPI_Comm parent_comm,
MPIX_Stream stream, MPI_Comm *stream_comm)

MT.COMB Benchmark (PT2PT MSG RATE)

Intel Xeon Platinum 8180M, ConnectX-6, nodes=2, ppn=1

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

M
es

sa
ge

s p
er

 se
co

nd

Message size (bytes)

1 thread (MPI_THREAD_SINGLE)

1 thread (MPI_THREAD_MULTIPLE)

1 thread (mpix_stream)

2 threads (implict)

2 threads (mpix_stream)

4 threads (implicit)

4 threads (mpix_stream)

MPIX Stream for Progress

§ Progress communication on a stream instead of individual request(s)

§ Application can create/join progress threads as needed

§ No longer relies on MPI_Wait/MPI_Test for progress

§ Coordinated stream progress needs no additional thread-safety from the
implementation

§ Progress thread does not need to be aware of outstanding requests

int MPIX_Stream_progress(MPIX_Stream stream)

OSU Microbenchmarks MPI_Iallreduce + MPIX_Stream_progress

Intel Xeon Platinum 8180M, Connect-X6, nodes=2, ppn=28

1

10

100

1000

10000

4 8 16 32 64
128 256 512

102
4

204
8

409
6

819
2

163
84

327
68

655
36

131
07

2

262
14

4

524
28

8

104
85

76

m
ic

ro
se

co
nd

s

Latency

default MPIR_CVAR_ASYNC_PROGRESS mpix-stream

0

10

20

30

40

50

60

70

80

90

100

4 8 16 32 64
128 256 512

102
4

204
8

409
6

819
2

163
84

327
68

655
36

131
07

2

262
14

4

524
28

8

104
85

76

Overlap(%)

default MPIR_CVAR_ASYNC_PROGRESS mpix-stream

MPIX_Stream as A GPU-Stream-Aware MPI

• Mismatch between MPI communication and GPU computation

• MPI routines do not take a stream argument and do not know
– Which stream the send data is produced on

– Which stream the receive data will be consumed on

• Syncing with stream to do MPI can be inefficient
– Launching/Sync cost

– Missed opportunity for computation/communication overlapping

MPI

stream1

stream2

stream3

Produce Consume

User has to sync the device to make sure
data is ready for MPI to send

MPI has to sync the device to make sure receive data
is ready to be consumed on any stream

Execution

Kernel
Launches

 A

0 10 20 30 40 t (us)

B C A B CSync

0 10 20 30 40 50 t (us)

(L) (R)

Triggering MPI Operation from GPU Streams

• Allowing point-to-point MPI to be “prepared and enqueued”

• GPU stream triggers transmission

• GPU-stream-aware interface MPI Application User GPU
Stream

ISEND

GPU
Stream

Sync
kernel 1

kernel 2

GPU
Idle

MPI Application
CPU Helper

Thread

ISEND_STREA
M

ISEND in Stream-aware MPI today
User GPU

Stream
Launch
Kernel 1

Launch
Kernel 2

Launch
Kernel 1

Launch
Kernel 2

kernel 1

kernel 2

ISEND
Xfer

ISEND in MPI today

Trigger

Proposed MPIX_Stream Interfaces: GPU Specific Operations

• int MPIX_Stream_create(MPI_Info info, MPIX_Stream *stream)

– For CUDA stream – MPI_Info_set(info, “type”, “cudaStream_t”);
MPIX_Info_set_hex(info, “value”, &stream, sizeof(stream));

• Stream_comm implies enqueueing on GPU stream

• MPIX_Stream_progress for helper thread or HW offloading capability

• For CUDA stream, additional “enqueue” APIs
– int MPIX_{Send,Isend,Recv,Irecv,Wait,Waitall}_enqueue(…)

• int MPIX_Stream_comm_create_multiplex(oldcomm, n, streams[],
&multiplex_comm)

– MPIX_Stream_{Send,Isend,Recv,Irecv}(…, src_stream_idx, dst_stream_idx)

Code Example – GPU Stream Triggered Ops
MPI_Info_create(&info);
MPI_Info_set(info, “type”, “cudaStream_t”);
MPIX_Info_set_hex(info, “value”, &cuda_stream, sizeof(cuda_stream));
MPIX_Stream_create(info, &mpi_stream);

MPIX_Stream_comm_create(MPI_COMM_WORLD, mpi_stream, &stream_comm);

if (rank == sender_rank) {
/* … */
MPIX_Send_enqueue(…, stream_comm);
/* … */

} else if (rank == receiver_rank) {
/* … */
MPIX_Irecv_enqueue(…, stream_comm, &req);
/* … */
MPIX_Wait_enqueue(&req, &status);
/* … */

}
cudaStreamSynchronize(cuda_stream);

Future Plan for MPIX_Stream

• Exploring different techniques for GPU triggering
– MPICH-4.1 based on stream launched host function

• Performing MPI_Isend inside the host function

– Triggering with GPU kernel and stream mem ops
• Fine-grained control

• Trade-off between cost and functionality triggered ops

• Better utilizing hardware features
– Triggering NIC directly

• Efficiency

• Better overlapping

Standalone PMI

• PMI remains an internal component in MPICH

• Supporting both PMI-1 and PMI-2 is confusing
– PMI-1 is the default in MPICH/Hydra, well tested
– PMI-2 is/was experimental, not feature-complete, less stable
– Slurm documents PMI-2, but supports PMI-1
– Cray supports PMI-2

• Interest in using PMI/Hydra independently from MPICH
– PMI interface is a universal interface that works everywhere MPI works
– Hydra is a robust and versatile launcher
– PMI/Hydra works well for multi-process runtimes, e.g. OpenSHMEM, NVSHMEM

• Need to extend PMI/Hydra to support modern PMI features
– To (partially) support PMIx

Standalone PMI -- available in MPICH-4.1b1

• Better configure options
– --with-pmi={pmi1,pmi2,pmix}

– --with-pmilib={mpich,slurm,cray,pmix}

– --with-pm={no,hydra,gforker,remshell}

– --with-pmi={slurm,cray} also works

• Separate release targets
– pmi-4.1b1.tar.gz and hydra-4.1b1.tar.gz

• Consistent PMI headers
– Third party PMI implementation should support the same pmi.h and pmi2.h

• Internal refactoring

– PMI-1 and PMI-2 are internally unified

– Wire protocol layer and semantic layer are separated

Standalone PMI – future plans

• Extend PMI-1 and PMI-2 to a superset
– PMI-1 backward compatible

– PMI-2 feature compatible, backward compatible with function aliases or thin wrappers

– Independent wire protocols

• Deprecating PMI-2
– Just #include <pmi.h> and libpmi.so, use functions with PMI_ prefix

– Always backward compatible

– New API extensions tracked by PMI_VERSION and PMI_SUBVERSION

• Extend PMI toward PMIx
– KVS scopes

– KVS value types, in particular, binary values

– Predefined/reserved KVS keys with PMI_ prefix

MPICH 4.1 Roadmap

•MPICH-4.1a1 released in May

•MPICH-4.1b1 released last week
– 4.1.x branch is created

• GA release in early 2023

• Critical bug fixes will be backported to 4.0.x

V4.0
V4.0.3

Jan ‘21 Nov ‘22

V4.1b1

Nov ‘22

V4.1

Jan ‘23

Other On-going Projects

• ML-based Performance Tuning for Collective
– Better collective algorithms and algorithms selection

• MPI with Compression
– Lossy compression for MPI collectives

– Reduction in msg size => reduction in latency

• Optimization Collective for GPUs
– Leveraging GPU IPC for collective

– Better management of intermediate buffers

• DPU Offloading

Programming Models and Runtime Systems Group

– Yanfei Guo (assistant scientist)

– Thomas Gillis (postdoc)
– Rob Latham (software developer)

– Ken Raffenetti (software developer)
– Rajeev Thakur (senior scientist)
– Xiaodong Yu (postdoc)

– Junchao Zhang (postdoc)

– Hui Zhou (software developer)

– Marius Horga (M.S.)
– John Jenkins (Ph.D.)
– Feng Ji (Ph.D.)
– Shintaro Iwasaki (Ph.D.)
– Ping Lai (Ph.D.)
– Palden Lama (Ph.D.)
– Yan Li (Ph.D.)
– Huiwei Lu (Ph.D.)
– Jintao Meng (Ph.D.)
– Ganesh Narayanaswamy

(M.S.)
– Qingpeng Niu (Ph.D.)
– Poornima Nookala (Ph.D.)

– Brian Skjerven (Ph.D.)
– Rajesh Sudarsan (Ph.D.)
– Hengjie Wang (Ph.D.)
– Xi Wang (Ph.D.)
– Lukasz Wesolowski (Ph.D.)
– Shucai Xiao (Ph.D.)
– Chaoran Yang (Ph.D.)
– Rohit Zambre (Ph.D.)
– Boyu Zhang (Ph.D.)
– Xiuxia Zhang (Ph.D.)
– Xin Zhao (Ph.D.)

Current and Recent Students

– Ashwin Aji (Ph.D.)
– Abdelhalim Amer (Ph.D.)
– Md. Humayun Arafat (Ph.D.)
– Seonmyeong Bak (Ph.D.)
– Alex Brooks (Ph.D.)
– Adrian Castello (Ph.D.)
– Yanhao Chen (Ph.D.)
– Dazhao Cheng (Ph.D.)
– James S. Dinan (Ph.D.)
– Piotr Fidkowski (Ph.D.)
– Huansong Fu (Ph.D.)
– Priyanka Ghosh (Ph.D.)
– Sayan Ghosh (Ph.D.)
– Ralf Gunter (B.S.)
– Jichi Guo (Ph.D.)
– Yanfei Guo (Ph.D.)

– Ziaul Haque Olive (Ph.D.)
– Kaiming Ouyang (Ph.D.)
– David Ozog (Ph.D.)
– Renbo Pang (Ph.D.)
– Nikela Papadopolou (Ph.D.)
– Sreeram Potluri (Ph.D.)
– Sarunya Pumma (Ph.D.)
– Li Rao (M.S.)
– Gopal Santhanaraman (Ph.D.)
– Thomas Scogland (Ph.D.)
– Min Si (Ph.D.)
– Shunpei Shiina (M.S.)

– Pavan Balaji (senior scientist)
– Abdelhalim Amer (assistant scientist)
– Neelima Bayyapu (postdoc)
– Wesley Bland (postdoc)
– Darius T. Buntinas (developer)
– Sudheer Chunduri (assistant scientist)
– Giuseppe Congiu (postdoc)
– James S. Dinan (postdoc)
– Huansong Fu (predoc)
– David J. Goodell (developer)

– Ralf Gunter (research associate)
– Shintaro Iwasaki (postdoc)
– Travis Koehring (predoc)
– Huiwei Lu (postdoc)
– Kavitha Madhu (postdoc)
– Lena Oden (postdoc)
– Antonio Pena (postdoc)
– Min Si (assistant scientist)
– Sangmin Seo (assistant scientist)
– Min Tian (visiting scholar)

Past Staff MembersCurrent Staff Members
– Yanjie Wei (visiting scholar)
– Yuqing Xiong (visiting scholar)
– Jian Yu (visiting scholar)
– Xiaomin Zhu (visiting scholar)

Thank you!

https://www.mpich.org

Also join our development call every Thursday at 9am (central): https://bit.ly/mpich-dev-call

https://www.mpich.org/
https://bit.ly/mpich-dev-call

