

OPX – Informed Development for a Next-Gen libfabric Provider

Charles Shereda, Engineering Manager, OPX Development

Ben Lynam, Senior Software Engineer, OPX Development

MPICH BOF, SC22

Omni-Path Evolution

Broad Ecosystem Support

Broad ecosystem support targeted across...

- All popular CPUs and accelerators, ensuring solution choice
- Key application-critical technologies, libraries, and frameworks
- Leading OEMs, ISVs, and reseller partners

All other names, logos, and brands maybe claimed as the property of others * Support planned

Engineering OPX

- OFIWG participant and libfabric provider
- Use PSM2 as performance baseline
- Compare build-to-build performance as well
- Utilize multiple test systems with different core counts
- Optimal protocol and HW paths are selected at runtime
 - Each protocol exploits its own sw/hw path
 - Eager
 - Multipacket Eager
 - Rendezvous

OPX Transfer Methods and Thresholds

PIO Send -> Programmed IO Send -> 0 - 16K

- Data transfer using CPU via memory mapped IO
- 0-16B Inject (packet w/o payload header only)
- 17B 8K Single packet eager*
- 8K+1 16K Multipacket eager
- 16K+1 RZV that may utilize either PIO or SDMA
- Faster than SDMA, but resource limited (limited pool of credits per endpoint)

SDMA -> Send DMA -> Minimum of (16K + 1)

- Data transfer using SDMA engines on HFIs
- Syscall required
- Either one-sided or RZV
- Expected TID would be RZV only

* May fall back to multipacket eager depending on credit availability

Thresholds Graphed (IMB tests)

128 PPN run on AMD Milan

MPI-1 Biband Throughput

Omni-Path Express vs PSM2

- Processing a Packet
- Optimized incoming packet processing (Do a single MPI_Recv(...))
 - Intel SDE testing shows tremendous improvement in instruction count
 - Significant improvements in cache line footprint

	PSM2	ОРХ	Improvement
Instruction count	3064	1170	62%
Cache lines for code	205	124	40%
Cache line loads	93	55	41%
New cache line access	354	209	41%

Every commit is checked to ensure no regressions

MPICH test bucket

MPICH tests run in addition to performance tests

Our MPICH test focus is more on correctness and coverage

CORNELIS

OPX Status

- OPX is part of libfabric 1.16.1
 - https://github.com/ofiwg/libfabric
 - Peacefully coexists with PSM2
- Omni-Path Express Suite (OPXS)
 - Cornelis's supported release vehicle
 - OPXS release containing OPX : 10.12.0.0.22, just released

Thank You