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Intel® MPI 2021.11 Update
§ What’s new:

§ MPI-3 RMA GPU (host and device initiated)
§ Device initiated mode: I_MPI_OFFLOAD_ONESIDED_DEVICE_INITIATED

§ MPI 4.0 features: MPI Sessions support
Large count/native ILP64 is available since 2021.10

§ OFI/cxi support and optimizations (Technical preview)
§ Enhancements:

§ GPU buffer aware pt2pt and collective operations optimization 
§ MPI_Alltoall, MPI_Allreduce

§ CPU/GPU platforms scalability optimizations



Intel® MPI 2021.11 MPI-3 RMA GPU (SYCL example)
Host initiated Device initiated*

q.submit([&](auto & h) {
h.parallel_for(sycl::range(my_subarray.x_size), [ =] (auto index) 

{
…

});
}).wait();

}
/* Perform 1D halo-exchange with neighbours */
if (my_subarray.rank != 0) {

int idx = XY_2_IDX(0, 0, my_subarray);
MPI_Put(&a_out[idx], my_subarray.x_size, 
MPI_DOUBLE, my_subarray.rank - 1,   
my_subarray.l_nbh_offt,
my_subarray.x_size, MPI_DOUBLE, cwin);

}
if (my_subarray.rank != (my_subarray.comm_size - 1)) {

int idx = XY_2_IDX(0, my_subarray.y_size - 1, my_subarray);
MPI_Put(&a_out[idx], 
my_subarray.x_size,MPI_DOUBLE,
my_subarray.rank + 1, 1,
my_subarray.x_size, MPI_DOUBLE, cwin);

}
/* Recalculate internal points in parallel with communications */
{

q.submit([&](auto & h) {
h.parallel_for(sycl::range(my_subarray.y_size - 2, 

my_subarray.x_size), [ =] (auto index) {
…

});
}).wait();

}

q.submit([&](auto & h) {
h.parallel_for(sycl::nd_range<1>(work_group_size, work_group_size),

[=](sycl::nd_item<1> item) {
…

/* Calculate values on borders to initiate communications early */
for (int column = my_x_lb; column < my_x_ub; column ++) {

…
}
item.barrier(sycl::access::fence_space::global_space);
if (local_id == 0) {
/* Perform 1D halo-exchange with neighbours */

if (my_subarray.rank != 0) {
int idx = XY_2_IDX(0, 0, my_subarray);

MPI_Put(&a_out[idx], my_subarray.x_size,  
MPI_DOUBLE,
my_subarray.rank - 1, my_subarray.l_nbh_offt,
my_subarray.x_size, MPI_DOUBLE, cwin);

}
if (my_subarray.rank != (my_subarray.comm_size - 1)) {

int idx = XY_2_IDX(0, my_subarray.y_size - 1, my_subarray);
MPI_Put(&a_out[idx], my_subarray.x_size,
MPI_DOUBLE,
my_subarray.rank + 1, 1,
my_subarray.x_size, MPI_DOUBLE, cwin);

}
}
/* Recalculate internal points in parallel with comunications */
for (int row = 1; row < my_subarray.y_size - 1; ++row) {

for (int column = my_x_lb; column < my_x_ub; column ++) {
…

}
}
item.barrier(sycl::access::fence_space::global_space);

});
}).wait();

Examples: https://github.com/oneapi-src/oneAPI-samples/tree/development/Libraries/MPI/jacobian_solver

* - Host initiated is available out of the box (I_MPI_OFFLOAD path)
Device initiated requires I_MPI_OFFLOAD_ONESIDED_DEVICE_INITIATED=1
** - Synchronization primitives require kernel level serialization
*** - Fortran support is work in progress

- MPI-3 RMA GPU subset of supported functions:
MPI_Put
MPI_Get
MPI_Win_lock / MPI_Win_lock_all**
MPI_Win_unlock / MPI_Win_unlock_all**
MPI_Win_flush / MPI_Win_flush_all**
MPI_Win_fence**

- Supported for scale up and scale out
- Supported for SYCL and OpenMP (C/C++ only***)
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Intel® MPI 2021.11 GPU buffer path latency 
optimizations
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IMB-MPI1-GPU allreduce. 4 nodes, 32 ranks total: 2 x Intel® 
Xeon® Platinum 8480+ Processor + 4 x Intel® Data Center

GPU Max 1550. Latency ratio. Higher is better

Intel MPI 2021.10 GPU buffer Intel MPI 2021.11 GPU buffer

Up to 9x 
speedup

- New latency and BW optimizations for 
GPU aware pt2pt and collective 
operations: allreduce/alltoall

- New highly efficient support for alltoall 
with XeLink and GPU RDMA* support 
(I_MPI_OFFLOAD_RDMA*)
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IMB-MPI1-GPU pingpong. 1 node, 2 ranks total: 2 x Intel® 
Xeon® Platinum 8480+ Processor + 2 x Intel® Data Center

GPU Max 1550. Latency ratio. Higher is better

Intel MPI 2021.10 GPU buffer Intel MPI 2021.11 GPU buffer

Up to 2.7x 
speedup

* I_MPI_OFFLOAD_RDMA is fully supported with IEFS + OFI/psm3 (available for ConnectX-6+ interconnects family as well):
https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-products/intel-ethernet-software.html

https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-products/intel-ethernet-software.html


MPICH for Aurora Update - I
• Improvements for Intel® Data Center GPU Max Series

• Optimizations for intra-node communication 
• Uses oneAPI Level Zero Inter Process Communication (IPC) primitives

• For latency and bandwidth, and for a variety of message sizes 

• Optimized collective algorithms for GPU buffers 
• AllReduce, Broadcast, Alltoall, and Allgather

• They benefit from XeLinks for large messages

• Support for GPU RDMA (point to point and RMA)

• Optimizations for RMA for GPU buffers
• Optimizations leverage the underlying hardware features

• Support for using a tile as a device or two tiles (in a single GPU) as a device



MPICH for Aurora Update - II
§ Contributions to Collectives

§ Topology (dragonfly) aware collectives for Broadcast, Allreduce, and Reduce
§ Hardware-offload Collectives for Broadcast, Allreduce, and Barrier

§ Triggered-based operations
§ Switched-based

§ Collectives with GPU buffers (in previous slide)
§ Past Contributions

§ High radix algorithms for large scale system
§ Multi-leader algorithms to leverage multiple NICs
§ Non-blocking algorithms
§ Intra-node collectives that leverage shared-memory in the node

§ Validation and bug fixes



Intel® SHMEM

§ Device-initiated OpenSHMEM operations on Intel GPUs with SYCL

§ Supports OpenSHMEM 1.5 style Remote Memory Access (RMA), Atomics, Collectives, 
Synchronization and Ordering operations

§ Includes work-group and sub-group extensions for co-operative thread execution

§ GPU RDMA enabled Sandia OpenSHMEM as host back-end through CPU proxy

§ Fast synchronization algorithm between CPU and GPU threads 

§ >= 90% scale-up performance efficiency with 2D stencil kernel

§ First open-source release is expected by next week)
§ https://github.com/oneapi-src/ishmem

https://github.com/oneapi-src/ishmem
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