

MPI@Intel
Maria J. Garzaran

Bringing AI Everywhere in HPC

Supercomputing 2023

Intel® MPI 2021.11 Update
§ What’s new:

§ MPI-3 RMA GPU (host and device initiated)
§ Device initiated mode: I_MPI_OFFLOAD_ONESIDED_DEVICE_INITIATED

§ MPI 4.0 features: MPI Sessions support
Large count/native ILP64 is available since 2021.10

§ OFI/cxi support and optimizations (Technical preview)
§ Enhancements:

§ GPU buffer aware pt2pt and collective operations optimization
§ MPI_Alltoall, MPI_Allreduce

§ CPU/GPU platforms scalability optimizations

Intel® MPI 2021.11 MPI-3 RMA GPU (SYCL example)
Host initiated Device initiated*

q.submit([&](auto & h) {
h.parallel_for(sycl::range(my_subarray.x_size), [=] (auto index)

{
…

});
}).wait();

}
/* Perform 1D halo-exchange with neighbours */
if (my_subarray.rank != 0) {

int idx = XY_2_IDX(0, 0, my_subarray);
MPI_Put(&a_out[idx], my_subarray.x_size,
MPI_DOUBLE, my_subarray.rank - 1,
my_subarray.l_nbh_offt,
my_subarray.x_size, MPI_DOUBLE, cwin);

}
if (my_subarray.rank != (my_subarray.comm_size - 1)) {

int idx = XY_2_IDX(0, my_subarray.y_size - 1, my_subarray);
MPI_Put(&a_out[idx],
my_subarray.x_size,MPI_DOUBLE,
my_subarray.rank + 1, 1,
my_subarray.x_size, MPI_DOUBLE, cwin);

}
/* Recalculate internal points in parallel with communications */
{

q.submit([&](auto & h) {
h.parallel_for(sycl::range(my_subarray.y_size - 2,

my_subarray.x_size), [=] (auto index) {
…

});
}).wait();

}

q.submit([&](auto & h) {
h.parallel_for(sycl::nd_range<1>(work_group_size, work_group_size),

[=](sycl::nd_item<1> item) {
…

/* Calculate values on borders to initiate communications early */
for (int column = my_x_lb; column < my_x_ub; column ++) {

…
}
item.barrier(sycl::access::fence_space::global_space);
if (local_id == 0) {
/* Perform 1D halo-exchange with neighbours */

if (my_subarray.rank != 0) {
int idx = XY_2_IDX(0, 0, my_subarray);

MPI_Put(&a_out[idx], my_subarray.x_size,
MPI_DOUBLE,
my_subarray.rank - 1, my_subarray.l_nbh_offt,
my_subarray.x_size, MPI_DOUBLE, cwin);

}
if (my_subarray.rank != (my_subarray.comm_size - 1)) {

int idx = XY_2_IDX(0, my_subarray.y_size - 1, my_subarray);
MPI_Put(&a_out[idx], my_subarray.x_size,
MPI_DOUBLE,
my_subarray.rank + 1, 1,
my_subarray.x_size, MPI_DOUBLE, cwin);

}
}
/* Recalculate internal points in parallel with comunications */
for (int row = 1; row < my_subarray.y_size - 1; ++row) {

for (int column = my_x_lb; column < my_x_ub; column ++) {
…

}
}
item.barrier(sycl::access::fence_space::global_space);

});
}).wait();

Examples: https://github.com/oneapi-src/oneAPI-samples/tree/development/Libraries/MPI/jacobian_solver

* - Host initiated is available out of the box (I_MPI_OFFLOAD path)
Device initiated requires I_MPI_OFFLOAD_ONESIDED_DEVICE_INITIATED=1
** - Synchronization primitives require kernel level serialization
*** - Fortran support is work in progress

- MPI-3 RMA GPU subset of supported functions:
MPI_Put
MPI_Get
MPI_Win_lock / MPI_Win_lock_all**
MPI_Win_unlock / MPI_Win_unlock_all**
MPI_Win_flush / MPI_Win_flush_all**
MPI_Win_fence**

- Supported for scale up and scale out
- Supported for SYCL and OpenMP (C/C++ only***)

Legend:
GPU kernel code
HOST code

MPI
invoked

from Host

MPI invoked
from GPU

Intel® MPI 2021.11 GPU buffer path latency
optimizations

0

2

4

6

8

10

12

4 8 16 32 64 128 256

ra
tio

message size

IMB-MPI1-GPU allreduce. 4 nodes, 32 ranks total: 2 x Intel®
Xeon® Platinum 8480+ Processor + 4 x Intel® Data Center

GPU Max 1550. Latency ratio. Higher is better

Intel MPI 2021.10 GPU buffer Intel MPI 2021.11 GPU buffer

Up to 9x
speedup

- New latency and BW optimizations for
GPU aware pt2pt and collective
operations: allreduce/alltoall

- New highly efficient support for alltoall
with XeLink and GPU RDMA* support
(I_MPI_OFFLOAD_RDMA*)

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128 256

ra
tio

message size

IMB-MPI1-GPU pingpong. 1 node, 2 ranks total: 2 x Intel®
Xeon® Platinum 8480+ Processor + 2 x Intel® Data Center

GPU Max 1550. Latency ratio. Higher is better

Intel MPI 2021.10 GPU buffer Intel MPI 2021.11 GPU buffer

Up to 2.7x
speedup

* I_MPI_OFFLOAD_RDMA is fully supported with IEFS + OFI/psm3 (available for ConnectX-6+ interconnects family as well):
https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-products/intel-ethernet-software.html

https://www.intel.com/content/www/us/en/support/articles/000088090/ethernet-products/intel-ethernet-software.html

MPICH for Aurora Update - I
• Improvements for Intel® Data Center GPU Max Series

• Optimizations for intra-node communication
• Uses oneAPI Level Zero Inter Process Communication (IPC) primitives

• For latency and bandwidth, and for a variety of message sizes

• Optimized collective algorithms for GPU buffers
• AllReduce, Broadcast, Alltoall, and Allgather

• They benefit from XeLinks for large messages

• Support for GPU RDMA (point to point and RMA)

• Optimizations for RMA for GPU buffers
• Optimizations leverage the underlying hardware features

• Support for using a tile as a device or two tiles (in a single GPU) as a device

MPICH for Aurora Update - II
§ Contributions to Collectives

§ Topology (dragonfly) aware collectives for Broadcast, Allreduce, and Reduce
§ Hardware-offload Collectives for Broadcast, Allreduce, and Barrier

§ Triggered-based operations
§ Switched-based

§ Collectives with GPU buffers (in previous slide)
§ Past Contributions

§ High radix algorithms for large scale system
§ Multi-leader algorithms to leverage multiple NICs
§ Non-blocking algorithms
§ Intra-node collectives that leverage shared-memory in the node

§ Validation and bug fixes

Intel® SHMEM

§ Device-initiated OpenSHMEM operations on Intel GPUs with SYCL

§ Supports OpenSHMEM 1.5 style Remote Memory Access (RMA), Atomics, Collectives,
Synchronization and Ordering operations

§ Includes work-group and sub-group extensions for co-operative thread execution

§ GPU RDMA enabled Sandia OpenSHMEM as host back-end through CPU proxy

§ Fast synchronization algorithm between CPU and GPU threads

§ >= 90% scale-up performance efficiency with 2D stencil kernel

§ First open-source release is expected by next week)
§ https://github.com/oneapi-src/ishmem

https://github.com/oneapi-src/ishmem

Legal Notices and Disclaimers

Performance varies by use, configuration and other factors. Learn more on the Performance
Index site.
Performance results are based on testing as of dates shown in configurations and may not reflect
all publicly available updates. See backup for configuration details. No product or component
can be absolutely secure.
Your costs and results may vary.
Intel technologies may require enabled hardware, software or service activation.
Intel does not control or audit third-party data. You should consult other sources to evaluate
accuracy.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the property of
others.

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/

Thank you!

it
starts

with

it
starts

with

