
MPI AND MPICH USE IN PETSC

e r h t jh tyh y

Junchao Zhang
(jczhang@anl.gov)

Mathematics and Computer Science Division
Argonne National Laboratory

Nov. 15, 2023

MPICH BoF at SC, Nov 12–17, 2023, Denver, Co.

mailto:jczhang@anl.gov

What is PETSc?

§ The Portable, Extensible Toolkit for Scientific Computation (https://petsc.org) is a
popular math library for scalable solution of scientific applications modeled by partial
differential equations (PDEs)
– Matrix, vectors, preconditioners, linear solvers, non-linear solvers, optimizers, etc

§ Written in C, but has C, Fortran, Python and Rust (WIP) bindings
– Python and Rust MPI bindings are driven by PETSc contributors

§ Runs on Linux, Mac and Windows (Intel or MS MPI) from laptops to exascale machines
§ Supports Nvidia, AMD and Intel GPUs with GPU-aware MPI or not

– -use_gpu_aware_mpi <bool>

2

Overall MPI Use in PETSc

§ Users do not need MPI if they only use PETSc sequentially
– ./configure –-with-mpi=0
– petsc will use its fake single-process MPI (mpiuni) to provide MPI APIs

§ ./configure –-with-cc=mpicc –-with-cxx=mpicxx …

§ ./configure –-with-cc=gcc –-with-cxx=g++ --download-mpich …

§ Requires minimal MPI-2.1 support, and could lower it to MPI-2.0 (1997) if users
really can not make it

§ Supports MPI-4.0 large count (--with-64-bit-indices)
§ Does not use MPI derived data types much, for mainly dealing with sparse data

3

(Key) MPI Use in PETSc (cont.)
§ Repeated, split-phased sparse neighborhood communication in Krylov solvers

– Default uses persistent MPI_Send/Recv (-sf_type basic)
– Support MPI nonblocking or persistent neighborhood (neighbor_alltoallv)

• -sf_type neighbor –sf_neighbor_persistent <bool>
– Support MPI one-sided with various window flavors and sync mechanisms

(but yet show an advantage over two-sided)
• -sf_type window -sf_window_flavor <create|dynamic|
allocate> -sf_window_sync <fence|active|lock>

§ MPI_Allreduce() in VecNorm / VecDot (O(1)) or in building two-sided information
from one-sided (O(P))

§ MPI_Iallreduce() in pipelined CG solver (-ksp_type pipecg)
§ MPI_Ibarrier() with -buildtwosided ibarrier*

– Less reliable than allreduce, always run into error at large scale
*Hoefler, Siebert and Lumsdaine, The MPI_Ibarrier implementation uses the algorithm in Scalable communication protocols for dynamic sparse data exchange, 2010

4

MPICH Use in PETSc

§ MPICH is recommended by PETSc for users needing valgrind
§ ./configure –-with-cc=gcc –-with-cxx=g++ --with-cuda --
download-mpich
– Lastet MPICH will be automatically downloaded and configured with GPU

support
– MPICH extensions will be auto-detected and macros will be set up for use in

PETSc code
• PETSC_HAVE_MPIX_STREAM (for petsc to use stream-aware MPI)

– -sf_use_stream_aware_mpi <bool> (experimental)
• PETSC_HAVE_MPIX_THREADCOMM

5

The “PETSc + OpenMP” Problem

§ PETSc uses the flat-MPI model (i.e., no OpenMP for multicore parallelism)
– After failed attempt to adopt OpenMP in PETSc a decade ago

§ The approach works well except when some OpenMP-only codes want to use
PETSc
– To leverage the tons of solvers and algorithms within PETSc
– It would be formidable for one to re-implement those solvers in OpenMP

6

The PCMPI Solution
MPI ranks 0 1 2 3

PETSc
Solvers

scatter data on rank 0 to ranks 1~3;
build distributed data structures;

do nothing & ilde

mpiexec -n 4 ./test

User code

User code do nothing & ilde

gather data from ranks 1~3 to 0;
build centralized data structures;

7

§ Run user omp code (with calls to petsc) with
mpiexec
– mpiexec –n 4 ./test -mpi_linear_solver_server

§ Deactivate all but rank 0 in PetscInitialize() and
let them wait for rank 0’s commands

§ The outermost KSP solver’s pre-conditioner
(PC) is secretly changed to type of PCMPI

§ When user calls KSPSolve(), re-activate the idle
ranks
– Scatter data from rank 0, do petsc MPI

parallel solve, then gather data to rank 0
§ See https://petsc.org/release/manualpages/PC/PCMPI

https://petsc.org/release/manualpages/PC/PCMPI

The MPICH MPIX_Threadcomm Solution
Mat A;

Vec x, b;

int nthreads = 4;

MPI_Comm comm;

PetscInitialize(&argc, &argv, NULL, NULL);

// user code building A, x, b etc

…

MPIX_Threadcomm_init(MPI_COMM_WORLD, nthreads, &comm);

#pragma omp parallel num_threads(nthreads)

{ Mat A2;

Vec x2, b2;

KSP ksp;

MPIX_Threadcomm_start(comm); // comm’s size is 4

MatCreate(comm, &A2);

MatCreateVecs(A2, &x2, &b2);

// Assemble A2, b2 from the shared A, b

KSPSolve(ksp, b2, x2);

// Transfer the solution x2 to x

MatDestroy(&A2);

MPIX_Threadcomm_finish(comm)

}

MPIX_Threadcomm_free(&comm);

PetscFinalize();
8

• Run the test as a regular OMP code:
OMP_NUM_THREADS=8 ./test –args

• User’s sequential code (might use OpenMP)
• PETSc is initialized on a single process
• Build sequential petsc objects such as matrices and vectors

• Build parallel petsc objects on the threadcomm comm
• Somehow transfer data from the shared sequential A, b to

parallel A2, b2
• Other parts of the petsc code work as if they were run by

mpiexec –n 4 ./test
• Caveats: petsc needs to be thread safe, e.g., in logging
• Future work: provide a new preconditioner type PCOMP to

wrap around this stuff

Conclusion & Thanks to MPICH Developers

§ PETSc is an excellent testbed and inspiring application for MPI and MPICH
research

§ Looking forward to greater integration between PETSc and MPICH
§ Q & A

9

