
ParaStation MPI

MPICH BoF SC‘23
November 15th, 2023

Simon Pickartz, ParTec AG

PARASTATION MODULO SOFTWARE SUITE

Execution Environment
and MPI Library

• MPI-4.0-compliant
• MPICH ABI-compatible

• Supports multiple
interconnects in parallel
• Modularity support
• Network bridging
• PMIx support

• Full Slurm integration

Tools for Provisioning
and Management

• System management CLI
• Image management

• Rolling updates
• Stateless & stateful

booting
• Post-install configuration

• Slurm integration
• Distributed database for

system configuration
• HealthChecker integration

Integrity of the
Computing Environment

• Automated error detection
& error handling

• Various hook-in points
• No interference with jobs
• TicketSuite integration
• Highly configurable

• 100+ tests (HW/SW):
• Node/System/Fabric level

Issue Tracking on
System Level

• Manual and automatic
ticket creation
• Prioritization

• Routing/Triage
• Documentation and
central information hub
• Maintenance planning
• Interfaces with external

ticketing systems

3

ARCHITECTURE
◉ Based on MPICH 4.1.2

◉ Support MPICH tools for tracing, debugging, etc.
◉ Integrates into MPICH on the MPID layer by implementing an

ADI3 device
◉ The PSP Device is powered by pscom – a low-level point-to-point

communication library
◉ Support the MPICH ABI Compatibility Initiative

◉ Support for various transports / protocols via pscom plugins
◉ Support for InfiniBand, Omni-Path, BXI, etc.
◉ Concurrent usage of different transports
◉ Transparent bridging between any pair of networks enabled by gateway

capabilities

◉ Proven to scale up to ~3,500 nodes and ~140,000 processes per job

PARASTATION MPI

psp

pscom

pscom Interface

pscom Plugin Interface

SHM UCX PSGW· · ·

MPI Applications

MPI Interface

Hardware Interfaces

Hardware

MPIR
(hardware-independent)

ADI3

MPID
(hardware-dependent)

M
PI
C
H

4

◉ Generalization of the Cluster-Booster Concept
◉ Heterogeneity on the system level
◉ Effective resource sharing

◉ Any number of (specialized) modules possible
◉ Cost-effective scaling
◉ Extensibility of existing modular systems by adding modules

◉ Fit application diversity
◉ Large-scale simulations
◉ Data analytics
◉ Machine/Deep Learning, AI
◉ Hybrid-quantum Workloads

◉ Achieve leading scalability and energy efficiency
◉ Exascale-ready!

◉ Unified software environment for running across all modules
◉ Enabled by the ParaStation Modulo software suite

MODULAR SUPERCOMPUTING ARCHITECTURE

Neuromorphic
Module

NN NN

Quantum
Module

QN QN

Data Analytics
Module

AN AN AN

Booster
Module

BN BN

BN BN BN

BN BN BN

BN

Cluster
Module

CN

CNCN

CN
Storage
Module

SN

SNSN

SN

MSA

5

◉ Support for multi-level hierarchy-aware collectives
◉ Optimize communication patterns to the topology of the MSA
◉ Assumption: Inter-module communication is the bottleneck
◉ Dynamically update the communication patterns

(experimental)

◉ API extensions for accessing modularity information
◉ New MPI split type for communicators

(MPIX_COMM_TYPE_MODULE)
◉ Provide the module id via the MPI_INFO_ENV object

◉ MPI Network Bridging
◉ Connect any pair of interconnect and protocol
◉ Transparent to the application layer

MSA AWARENESS

C C

C C

B B

B B

D D

Hierarchical
(MSA-aware)

White Paper A.1 / Step 3 – Completion

1 Introduction

This white paper builds upon the work realized in Subtask A.1 of the Network Bridge Research
Collaboration (NBRC). Previously, a set of possible optimizations to the gateway protocol
were discussed [1]. The most promising have been implemented as part of the work in the
NBRC. This white paper presents their implementation and discusses their impact on the
gateway performance.

This paper is structured as follows: it starts with Section 2 containing a brief summary of the
gateway concept as part of the ParaStation Modulo software stack. Section 3 summarizes
possible optimizations of this concept and provides insights into their implementation. In
doing so, performance figures obtained on the JURECA Cluster-Booster architecture at Jülich
Supercomputing Center (JSC) are reported. The paper concludes with a summary of the
findings.

2 Transparent Message Bridging

The Message-Passing Interface Standard (MPI) provides a transparent view of the underlying
network architecture, i. e., the MPI processes are not aware of the actual network layer
transport. Therefore, a message forwarding mechanism is required if a modular system uses
multiple high-performance networks which are only connected through dedicated bridge nodes.
An appropriate solution for enabling transparent MPI message forwarding is provided as part
of the ParaStation Modulo software stack. This solution relies on the well-known gateway
(GW) concept (cf. Figure 1).

Application

psmpi

pscom

Application

psmpi

pscom

GW IB GWPSM

psgwd

pscom

IB PSMGW

InfiniBand Omni-Path

transparent communication
via a virtual GW connection

Figure 1: A schematic overview of the MPI bridging solution. This relies on the gateway
concept and is implemented on top of the low-level communication interface pscom.

To implement this solution, the ParaStation low-level communication library pscom has
been extended by two components: (1) the pscom gateway daemon (psgwd) running on the

ParTec/Intel-Confidential 2

Transparent Network Bridging

6

◉ Optimize MPI one-sided communication
◉ Leverage hardware capabilities where possible
◉ Avoid overheads of two-sided-based

implementations

◉ Implementation on the pscom level
◉ Provide upper layers (i.e., PSP) with

direct access to hardware capabilities
◉ Generic RMA interface for the various

transports supported by pscom
◉ Provide two-sided-based fallback

MPI ONE-SIDED VIA NATIVE RMA

PSP Device
Interface

pscom
Interface

MPI Windows Communication Synchronization

Memory Region RMA Comm. API
(put, get, acc, atomic) RMA Sync. API

Mem. Reg.
with HCA RMA Low-level

Synchronization
Two-
sided

plugin
Interface

Optimized MPI One-sided via Native RMA

7

◉ Dynamic resource adaptations within an MPI application
◉ Adding or removing of HPC resources during job run time
◉ Ensure maximum MPI standard compliance
◉ Exploit MPI-4 features (e.g., MPI Sessions)
◉ Dense, monotonic MPI rank numbering

(i.e., no gaps or overlaps)

◉ Usage Models
◉ Job-initiated (according to current job needs)
◉ Scheduler-initiated (maximize system utilization)
◉ Externally initiated (based on application models)

◉ Initially, focus on Job-initiated malleability

MALLEABILITY FOR MPI

0 1 2 3 4 5 6 7X X X X

0 1 2 3

Shrink

0 1 2 3 4 5

Expansion

https://deep-projects.eu/

MALLEABILITY IN PARASTATION MPI
M A L L E A B I L I T Y - R E L A T E D D E V E L O P M E N T S

PATH TOWARDS MALLEABILITY

COMMUNITY ENGAGEMENT

– Included in ParaStation
MPI as of release 5.9.2-1
(Sep '23)

– Many enhancements
already merged upstream

PMIx SUPPORT

– PMIx Process Sets for
MPI Sessions

– PMIx Spawn support

MPI SESSIONS

– Reference counting &
non-standard strict session
finalization

– Decoupling from MPI
world model

– Re-initialization of the
MPI library

– Error handling

– MPI Extensions
– PMIx Extensions

WHAT’S NEXT?
C U R R E N T A N D F U T U R E D E V E L O P M E N T S

– Improve and test MPI extensions for
malleability

– Tight integration with the
ParaStation Process Manager via
PMIx

Malleability
– Extend support for hierarchical

collectives (e.g., UCC support)
– Performance optimizations (e.g.,

further improve BXI support)
– Improve RMA synchronization

Optimizations

– Integration of MPICH 4.2 upstream
sources

– Provide MPI-4.1 support

MPI-4.1 Standardization

OUTLOOK

QUESTIONS
ParTec AG, Possartstr. 20, D-81679 München – www.par-tec.com

{pickartz, sonja.happ, moschny, clauss}@par-tec.com

THANK YOU FOR YOUR ATTENTION

