
Chen Wang 1, Yanfei Guo 2, Pavan Balaji 3, Marc Snir 1

1 University of Illinois Urbana-Champaign
2 Argonne National Laboratory
3 Meta, Inc

Pilgrim
Near-Lossless MPI Tracing and Proxy Application
Autogeneration

2022/05/11

Why do we collect MPI information

• For MPI and application users:

• How frequent calls are?

• Am I providing the right hints to MPI for my usage?

• Am I using MPI correctly?

• For MPI developers:

• What features are used and in what way?

• Message sizes, communicator sizes, buffer reuse?

• Are send/recv sizes the same or different?

• Are collective operation datatype on all processes the same or different?

Pilgrim vs. Existing tools
Pilgrim stores every parameter of every MPI call

De
ta

ils

Overhead

ScalaTrace

Cypress

Autoperf

Darshan

Pilgrim Existing tools are either incomplete or have
unacceptable overhead (time or space)

Higher

100%

Pilgrim vs. Existing tools
Pilgrim stores every parameter of every MPI call

De
ta

ils

Overhead

ScalaTrace

Cypress

Autoperf

Darshan

Pilgrim

Higher

100%
Existing tools are either incomplete or have
unacceptable overhead (time or space)

Challenges

1. Scalability:

• the longer an application runs or the more nodes it runs on, the more
function calls it will make

2. Usefulness: meaningful for post-processing

• MPI_Comm, MPI_Request, Memory pointers?

3. Correctness and completeness:

• Over 400 MPI functions; Many corner cases, e.g., non-blocking
communicator creation.

How?

1. Scalability:

• the longer an application runs or the more nodes it runs on, the more
function calls it will make

2. Usefulness: meaningful for post-processing

• MPI_Comm, MPI_Request, Memory pointers?

3. Correctness and completeness:

• Over 400 MPI functions; Many corner cases, e.g., non-blocking
communication creation.

Recurring Pattern Recognization

Memory Operation Interception
Symbolic Representation

Wrappers are automatically
generated from MPI Standard

How?

• Primarily relies on “recurring pattern recognition”

• The key is to detect as many patterns as possible.

• Store the patterns in a context-free-grammar (CFG)

“a a b a b c d c d”
S → a A2 B2
A → a b
B → c dSequitur

MPI_Barrier(comm1);

MPI_Comm_size(comm2, 3);

How?

• Primarily relies on “recurring pattern recognition”

• The key is to detect as many patterns as possible.

• Store the patterns in a context-free-grammar (CFG)

1 2 3

8 9 4

7 6 5

e.g., 2D 5-points periodical stencil
will exhibit up to 9 unique
communication patterns

Result

• Pilgrim stores more
information with less space
and time overhead.

• Only unique communication
patterns matter

• Trace size will stay
constant if all patterns are
recognized

• Overhead depends on
communication-to-
computation ratio.

M
PI

 C
al

ls
 (×

10
E6

)

0
10
20
30
40
50
60
70

Tr
ac

e
Fi

le
 S

iz
e

(K
B

)
1

10

100

1000

10000

Number of processes

64 128 256 512 1024 2048 4096

ScalaTrace Pilgrim MPI Calls

4444444

FLASH StirTurb 3D Simulation

Result

● Cellular Sedov StirTurb

● ●

●

●

●

●

● ●

6

7

9

558

128 256 512 1024 2048 4096 819216384
Number of processes

Tr
ac

e
si

ze
 (K

B
)

● ● ●
●

●

●

●

●

0

100

200

300

128 256 512 1024 2048 4096 819216384
Number of processes

M

PI
 c

al
ls

 (1
E6

)

• Pilgrim stores more
information with less space
and time overhead.

• Only unique communication
patterns matter

• Trace size will stay
constant if all patterns
are recognized

• Overhead depends on
communication-to-
computation ratio.

Proxy app generation
Issues of the current method

Designing a proxy app manually is a nontrivial task and exposes three major
issues:

1. It requires the involvement of the experts of the original application when it
tries to best mimic the original behavior. It takes significant efforts since the
original application code is most likely huge.

2. It requires access to the source code of the original application, which may
be infeasible for classified applications.

3. Removing part of the intrinsic logic (e.g., computation) from the original
application makes debugging and correctness checking difficult.

Proxy app generation
Autogeneration algorithm

With the detailed information preserved by Pilgrim, however, we can design a
proxy app generator that addresses these issues.

1. The proxy app is generated automatically from Pilgrim traces with little or no
human intervention.

2. It relies only on the traces of the targeted application, not the source code;
and the tracing process has already stripped away the computation
information.

3. Correctness checking is easy because we can run the generated proxy app
with Pilgrim again and compare its traces with the original application's traces.

Proxy app generation
Autogeneration algorithm

With the detailed information preserved by Pilgrim, however, we can design a
proxy app generator that addresses these issues.

1. The proxy app is generated automatically from Pilgrim traces with little or no
human intervention.

2. It relies only on the traces of the targeted application, not the source code;
and the tracing process has already stripped away the computation
information.

3. Correctness checking is easy because we can run the generated proxy app
with Pilgrim again and compare its traces with the original application's traces.

MPI
Program

Pilgrim
Traces

Run with Pilgrim Proxy AppApp
generator

Run with
Pilgrim

Pilgrim
Traces

Compare

Proxy app generation

• Restore the captured recurring patterns, which represent the original code
structure.

• The proxy app will be small and clean if Pilgrim compresses well

• The generated code size is proportional to the size of the compressed
trace

●

●

●
●

●

●

●

●

28 28
31 29

27

31
28 28

174
144

239 176

85

240

145
89

1415
1197

1886 1427

833

2124

1201
865

● ● ● ● ● ● ● ●

74 74 74 74 74 74 74 74

3508 3508 3508 3508 3508 3508 3508 3508

37952 37952 37952 37952 37952 37952 37952 37952
● ● ● ● ● ● ● ●

2 2 2 2 2 2 2 2

35 35 35 35 35 35 35 35

462 462 462 462 462 462 462 462

Cellular Sedov StirTurb

128 256 512 1024 2048 4096 8192 16384 128 256 512 1024 2048 4096 8192 16384 128 256 512 1024 2048 4096 8192 16384
Number of processes

● LOC of the generated proxy app Rules Unique grammars

Co
un

t

Cellular Sedov StirTurb

0 20 40 60 0 20 40 60 0 20 40 60
0

20

40

60

Source rank

D
es

tin
at

io
n

ra
nk

Other features and limitations

• Pilgrim tracks all memory management operations (CUDA and CPU).

• It also knows which GPU device was the memory allocated

• Multi-threading support is almost done, e.g., MPI_THREAD_MULTIPLE

• For the proxy-app generator, user-defined MPI functions (e.g.,
MPI_Copy_function) are not supported

• Pilgrim traces function calls only at runtime and does not perform compile-
time analysis

Resources

• Pilgrim is publicly available at: https://github.com/pmodels/pilgrim

• Papers:

• Chen Wang, Pavan Balaji, and Marc Snir. “Pilgrim: Scalable and (near) Lossless
MPI Tracing”, SC, 2021.

• Chen Wang, Yanfei Guo, Pavan Balaji, and Marc Snir. “Near-Lossless MPI Tracing
and Proxy Application Autogeneration”, under review, TPDS.

• Contact:

• Chen Wang (chenw5@illinois.edu)

• Yanfei Guo (yguo@anl.gov)

https://github.com/pmodels/pilgrim
mailto:chenw5@illinois.edu
mailto:yguo@anl.gov

