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Motivation

• MPI collective -> high-performance -> significant impact on various research fields.

• Exascale computing -> large-message MPI collectives -> Scalability challenges.
• VGG19 with 143 million parameters -> communication overhead of 83% [1].
• ResNet-50 with 25 million parameters -> communication overhead of  72% [1].

• Inter-node communications -> limited network bandwidth -> major bottleneck.

• How can we solve this bottleneck?



Motivation

• Designing large message algorithms: Decrease the overall communication volume.

• Allreduce: Ring: 𝟐∗(𝑵%𝟏)𝑵 ∗ 𝑫 vs Recursive-doubling: log𝑵 ∗ 𝑫 .

• Lossy compression: Significantly reduce the message size.

• To address this issue, prior research simply applies the off-the-shelf fix-rate 
lossy compressors in the MPI collectives, leading to suboptimal performance, 
limited generality, and unbounded errors [2].



Design of C-Coll 

• C-Coll (Compression-accelerated Collectives): (IPDPS 24)

• Overlap the compression with communication using our developed pipelined SZx in our 
collective computation framework.

• Reduce the compression overhead and mitigate error propagation by choosing 
the appropriate timing of compression.

• Mathematical proof: To prove the error-bounded nature -> We perform an in-
depth mathematical analysis to derive the limited impact of error-bounded lossy 
compression on error propagation.



Theoretical Analysis of Error Propagation for 
C-Coll
• Collective data movement framework:

• The final error for each data point is within '𝒆,where '𝒆 is the compression error
bound.

• Collective computation framework:

• The final aggregated error of the most widely used sum operation falls within 
the interval [− 𝟐

𝟑 𝒏'𝒆, 𝟐𝟑 𝒏'𝒆] with the probability of 95.44%.
• For example, if there are 100 nodes, and the error bound is 1E-3, the 

aggregated error is bounded in the range of [−6.7E−3, 6.7E−3] with a 
probability of 95.44%.



Performance of C-Coll

• Our C-Coll: a novel design for lossy-compression-integrated MPI 
collectives that significantly improves performance with bounded 
errors. 

• C-Allreduce is up to 2.1X faster than MPI_Allreduce, while other CPRP2P 
baselines demonstrate performance degradation.

• C-Scatter is up to 1.8X faster than MPI_Scatter.

• C-Bcast is up to 2.7X faster than MPI_Bcast.



Limitation of C-Coll

• C-Coll is optimized for host-centric collective communications. Thus, it 
faces serious issues in GPU-centric communications [2].
• Expensive host-device data movements.
• Underutilized GPU devices.
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Design of gZCCL

• gZCCL (GPU-aware Compression-
Accelerated Collective 
Communication Library): (ICS 24)

• Improve the scalability and 
GPU utilization in the collective 
computation framework.

• Overlap compression with our 
multi-stream cuSZp in the 
collective data movement 
framework.
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Figure 1: Design architecture (purple 
box: newly contributed modules)



Evaluating the Collective Computation 
Framework of gZCCL

Figure 2 demonstrates 
that our recursive 
doubling-based gZ-
Allreduce (ReDoub) 
consistently performs 
the best, achieving up 
to 20.2X and 4.5X
speedups compared to 
Cray MPI and NCCL
respectively, across 
varying GPU counts. 

Figure 2: Scalability evaluation of our gZ-
Allreduce with Cray MPI and NCCL in different 
GPU counts.
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Image Stacking Accuracy Analysis

Figure 4: Visualization of final stacking image.

(a) Cray MPI/NCCL (lossless) (b) gZCCL (2E-4)

gZCCL (Ring) (1E-4) reaches a great PSNR of 56.83 and an NRMSE of 1E-3. 
gZCCL (ReDoub) (1E-4) demonstrates better data quality, achieving a PSNR of 57.80 and 
an NRMSE of 1E-3.



Summary
• Performance: With our C-Coll and gZCCL, compression-

accelerated collectives have significantly higher performance 
than the SOTA communication libraries on both CPU and GPU.

• Accuracy: With the accuracy-aware design, C-Coll and gZCCL
can demonstrate well-controlled accuracy through both 
theoretical and experimental analysis.

• Future Work: We plan to further optimize compression-
accelerated collectives for FPGAs and AI accelerators.
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Questions?

Thanks for your attention!



C-Coll Overall system design architecture

Figure 1: Design architecture (yellow box: applications; green 
box: new contributed modules; purple box: third-party)
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Image Stacking Performance Evaluation

Table 1: Image stacking performance analysis (The speedups 
are based on Cray MPI. The last four columns are 
performance breakdowns of our gZCCL).



Evaluating Our Collective Data Movement 
Framework (gZCCL)

Figure 3 shows that our 
gZ-Scatter outperforms 
Cray MPI in all cases. As 
the GPU count 
increases, the speedup 
of gZ-Scatter first 
increases, peaking at 
28.7X, and then 
gradually decreases to 
4.75X when the GPU 
count reaches 512.

Figure 3: Scalability evaluation of our gZ-
Scatter with Cray MPI in different GPU counts.
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Evaluating Our Collective Computation 
Framework

Figure 3 shows that our 
recursive doubling-
based gZ-Allreduce
(ReDoub) consistently 
outperforms across all 
data sizes, achieving up 
to a speedup of 18.7X
compared to Cray MPI
and a 3.4X performance 
improvement over 
NCCL. 

Figure 3: Performance evaluation of our gZ-
Allreduce with Cray MPI and NCCL in different 
data sizes.
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Evaluating Our Collective Data Movement 
Framework

Figure 5 indicates that 
our gZ-Scatter is able to
consistently outperform 
Cray MPI across all data 
sizes. The speedup of 
gZ-Scatter enhances as 
the data size increases, 
achieving its maximum 
20.2X at 600 MB.

Figure 5: Performance evaluation of our gZ-
Scatter with Cray MPI in different data sizes.
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About me

• Two teams in Argonne: 

• Yanfei Guo and Rajeev Thakur in the MPICH project, which is one of the most 
widely-used MPI libraries.

• Sheng Di and Franck Cappello in the SZ project, which is the leading lossy 
compressor framework.


