
Accelerating Collective
Communication With Error-Bounded

Lossy Compression

Jiajun Huang
ANL & UC Riverside

Motivation

• MPI collective -> high-performance -> significant impact on various research fields.

• Exascale computing -> large-message MPI collectives -> Scalability challenges.
• VGG19 with 143 million parameters -> communication overhead of 83% [1].
• ResNet-50 with 25 million parameters -> communication overhead of 72% [1].

• Inter-node communications -> limited network bandwidth -> major bottleneck.

• How can we solve this bottleneck?

Motivation

• Designing large message algorithms: Decrease the overall communication volume.

• Allreduce: Ring: 𝟐∗(𝑵%𝟏)𝑵 ∗ 𝑫 vs Recursive-doubling: log𝑵 ∗ 𝑫 .

• Lossy compression: Significantly reduce the message size.

• To address this issue, prior research simply applies the off-the-shelf fix-rate
lossy compressors in the MPI collectives, leading to suboptimal performance,
limited generality, and unbounded errors [2].

Design of C-Coll

• C-Coll (Compression-accelerated Collectives): (IPDPS 24)

• Overlap the compression with communication using our developed pipelined SZx in our
collective computation framework.

• Reduce the compression overhead and mitigate error propagation by choosing
the appropriate timing of compression.

• Mathematical proof: To prove the error-bounded nature -> We perform an in-
depth mathematical analysis to derive the limited impact of error-bounded lossy
compression on error propagation.

Theoretical Analysis of Error Propagation for
C-Coll
• Collective data movement framework:

• The final error for each data point is within '𝒆,where '𝒆 is the compression error
bound.

• Collective computation framework:

• The final aggregated error of the most widely used sum operation falls within
the interval [− 𝟐

𝟑 𝒏'𝒆, 𝟐𝟑 𝒏'𝒆] with the probability of 95.44%.
• For example, if there are 100 nodes, and the error bound is 1E-3, the

aggregated error is bounded in the range of [−6.7E−3, 6.7E−3] with a
probability of 95.44%.

Performance of C-Coll

• Our C-Coll: a novel design for lossy-compression-integrated MPI
collectives that significantly improves performance with bounded
errors.

• C-Allreduce is up to 2.1X faster than MPI_Allreduce, while other CPRP2P
baselines demonstrate performance degradation.

• C-Scatter is up to 1.8X faster than MPI_Scatter.

• C-Bcast is up to 2.7X faster than MPI_Bcast.

Limitation of C-Coll

• C-Coll is optimized for host-centric collective communications. Thus, it
faces serious issues in GPU-centric communications [2].
• Expensive host-device data movements.
• Underutilized GPU devices.

CPR 121%
27%

MPI 273% 60%

DATAMOVE
46% 10%

REDUCTION
13% 3%

OTHERS
1% 0%

CPR
23%

MPI
17%

DATAMOVE
45%

REDUCTION
14%

OTHERS
1% Figure 1: Performance

breakdown of Allreduce
using CPRP2P and C-Coll
on 64 A100 GPUs:
CPRP2P's first percentage
is scaled to C-Coll's
runtime, and the second
is scaled to its own.

(a) C-Coll (b) CPRP2P

Design of gZCCL

• gZCCL (GPU-aware Compression-
Accelerated Collective
Communication Library): (ICS 24)

• Improve the scalability and
GPU utilization in the collective
computation framework.

• Overlap compression with our
multi-stream cuSZp in the
collective data movement
framework.

User Applications & Analysis (Image Stacking, etc.)

gZCCL Interface (gZ-Allreduce, gZ-Scatter)

Application

Interface

Collective Computation
Framework

Improve
Scalability

Improve
GPU

Utilization

Collective Data Movement
Framework

Overlap
Compression

Multi-stream
cuSZp

MPI P2P Compression Adapter

Abstract Device Interface Lossy Compression Library Library

Middleware

Algorithm
designing &
performance
optimizationgZ

C
C
L

Third-party Our designed key
modules in gZCCL

Detailed performance
optimization strategies

Figure 1: Design architecture (purple
box: newly contributed modules)

Evaluating the Collective Computation
Framework of gZCCL

Figure 2 demonstrates
that our recursive
doubling-based gZ-
Allreduce (ReDoub)
consistently performs
the best, achieving up
to 20.2X and 4.5X
speedups compared to
Cray MPI and NCCL
respectively, across
varying GPU counts.

Figure 2: Scalability evaluation of our gZ-
Allreduce with Cray MPI and NCCL in different
GPU counts.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512

S
p

e
e

d
u

p
s

GPU Counts

Cray MPI
NCCL
gZ-Allreduce (Ring)
gZ-Allreduce (ReDoub)

Image Stacking Accuracy Analysis

Figure 4: Visualization of final stacking image.

(a) Cray MPI/NCCL (lossless) (b) gZCCL (2E-4)

gZCCL (Ring) (1E-4) reaches a great PSNR of 56.83 and an NRMSE of 1E-3.
gZCCL (ReDoub) (1E-4) demonstrates better data quality, achieving a PSNR of 57.80 and
an NRMSE of 1E-3.

Summary
• Performance: With our C-Coll and gZCCL, compression-

accelerated collectives have significantly higher performance
than the SOTA communication libraries on both CPU and GPU.

• Accuracy: With the accuracy-aware design, C-Coll and gZCCL
can demonstrate well-controlled accuracy through both
theoretical and experimental analysis.

• Future Work: We plan to further optimize compression-
accelerated collectives for FPGAs and AI accelerators.

References
1. A. M. Abdelmoniem, A. Elzanaty, M.-S. Alouini, and M. Canini, “An efficient statistical-based gradient compression technique for

distributed training systems,” 2021.
2. Jiajun Huang and Sheng Di and Xiaodong Yu and Yujia Zhai and Zhaorui Zhang and Jinyang Liu and Xiaoyi Lu and Ken

Raffenetti and Hui Zhou and Kai Zhao and Zizhong Chen and Franck Cappello and Yanfei Guo and Rajeev Thakur. 2023. An
Optimized Error-controlled MPI Collective Framework Integrated with Lossy Compression. arXiv:2304.03890 [cs.DC]

3. Yafan Huang, Sheng Di, Xiaodong Yu, Guanpeng Li, and Franck Cappello. 2023. CuSZp: An Ultra-fast GPU Error-bounded
Lossy Compression Framework with Optimized End-to-End Performance. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC '23).

Questions?

Thanks for your attention!

C-Coll Overall system design architecture

Figure 1: Design architecture (yellow box: applications; green
box: new contributed modules; purple box: third-party)

User Applications/Analysis (Image Stacking , etc.)

C-Coll Interface (C-Scatter, C-Allreduce, etc.)

Data Movement Framework Collective Comp. Framework

Compression Adapter

Error-bounded Lossy
Compression

Application

Interface

MPI P2P Middleware

Abstract Device Interface Library

Performance
Optimization

Reduce
Compression

Overhead
Mitigate Error
Propagation

Overlap
Compression and
Communication

Pipelined
SZxC

-C
ol
l

Image Stacking Performance Evaluation

Table 1: Image stacking performance analysis (The speedups
are based on Cray MPI. The last four columns are
performance breakdowns of our gZCCL).

Evaluating Our Collective Data Movement
Framework (gZCCL)

Figure 3 shows that our
gZ-Scatter outperforms
Cray MPI in all cases. As
the GPU count
increases, the speedup
of gZ-Scatter first
increases, peaking at
28.7X, and then
gradually decreases to
4.75X when the GPU
count reaches 512.

Figure 3: Scalability evaluation of our gZ-
Scatter with Cray MPI in different GPU counts.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64 128 256 512

S
p

e
e

d
u

p
s

GPU Counts

Cray MPI
gZ-Scatter

Evaluating Our Collective Computation
Framework

Figure 3 shows that our
recursive doubling-
based gZ-Allreduce
(ReDoub) consistently
outperforms across all
data sizes, achieving up
to a speedup of 18.7X
compared to Cray MPI
and a 3.4X performance
improvement over
NCCL.

Figure 3: Performance evaluation of our gZ-
Allreduce with Cray MPI and NCCL in different
data sizes.

 0

 5

 10

 15

 20

 25

 30

50 100 150 200 250 300 350 400 450 500 550 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

Cray MPI
NCCL
gZ-Allreduce (Ring)
gZ-Allreduce (ReDoub)

Evaluating Our Collective Data Movement
Framework

Figure 5 indicates that
our gZ-Scatter is able to
consistently outperform
Cray MPI across all data
sizes. The speedup of
gZ-Scatter enhances as
the data size increases,
achieving its maximum
20.2X at 600 MB.

Figure 5: Performance evaluation of our gZ-
Scatter with Cray MPI in different data sizes.

 0

 5

 10

 15

 20

50 100 150 200 250 300 350 400 450 500 550 600

S
p

e
e

d
u

p
s

Data Sizes (MB)

Cray MPI
gZ-Scatter

About me

• Two teams in Argonne:

• Yanfei Guo and Rajeev Thakur in the MPICH project, which is one of the most
widely-used MPI libraries.

• Sheng Di and Franck Cappello in the SZ project, which is the leading lossy
compressor framework.

