
THE COLLABORATION BETWEEN PETSC AND MPICH

e r h t jh tyh y

Junchao Zhang
(jczhang@anl.gov)

Mathematics and Computer Science Division
Argonne National Laboratory

June. 12, 2024

MPICH BoF at Consortium for the Advancement of Scientific Software (CASS) Community BoF Days, June 11-13, 2024, Virtual

mailto:jczhang@anl.gov

PETSc and MPICH under CASS

2

CASS

COLABS CORSA PESO S4PST STEP SWAS FASTMath RAPIDS

PETScMPICH

OASIS

MPICH and PETSc at Argonne

§ MPICH: the most widely used MPI implementation and is the implementation of
choice for the world's fastest machines

§ PETSc: a scalable numerical library for linear and non-linear solvers and more
– Has C, Fortran, Python, Rust bindings
– Runs on Linux, Mac and Windows
– Widely used in academia and industry in dozens of disciplines

3

Outline

§ The PETSc/MPICH collaboration in the MPI-1.0~2.0 era and PETSc’s adoption
of new MPI features

§ The PETSc/MPICH collaboration in the MPI-2.0~4.0 era and PETSc’s adoption
of new MPI features

§ The PETSc/MPICH collaboration in recent years
§ Conclusion

4

MPI-1.0~2.0 era

5

1994

2008

1997

• MPICH was originally developed
during the MPI standards
process starting in 1992 to
provide feedback to the MPI
Forum on implementation and
usability issues.

• Bill Gropp was deeply involved in
both projects

1996

PETSc’s most successful use of MPI-1.0 features

§ MPI communicators and attributes
– PETSc inner communicator to separate PETSc library messages from callers
– Sub-communicator in multigrid solvers

§ Persistent MPI_Send/Recv
– Repeated, split-phased sparse neighborhood communication in Krylov solvers

§ Various MPI collectives
– MPI_Allreduce() for VecNorm(); two-sided discovery from one-sided

§ MPI datatypes
– Note derived data types are less used, since we mainly deal with sparse data

6

“MPI changed everything, by providing an extensive API for message passing and
collectives that allowed portable distributed memory scientific libraries to no longer
need to be programmed to the lowest common denominator of message passing
systems. … The MPI communicator concept made distributed parallel scientific
libraries practical in two ways, it eliminated the tag collision problem and (by the
use of subcommunicators) allowed applications to simply utilize scientific libraries
to perform needed computations on subsets of processes, for example with ‘divide
and conquer’ algorithms.”

-- Barry Smith
https://www.hpcwire.com/2017/05/01/mpi-25-years-old/

7

PETSc’s adoption of new MPI-2.0 features

 MPI-IO
✅ MPI Fortran-90 binding
❌ MPI one-sided (RMA) & dynamic process

– Not even tried in the next decade
❌ MPI + multithreading

– PETSc added support for both OpenMP and Pthreads and found the code
was never faster than pure MPI and cumbersome to use hence we have
removed it

8

“The PETSc team has no problems with proposals to replace the pure MPI programming
model with a different programming model but only with an alternative that is
demonstrably better, …

At least for the PETSc package, the concept of being thread-safe is not simple. It has major
ramifications about its performance and how it would be used; it is not a simple matter of
throwing a few locks around and then everything is honky-dory.”

-- Barry Smith
https://www.mcs.anl.gov/petsc/petsc-3.15/docs/miscellaneous/threads.html

9

MPI-2.0~4.0 era
§ As both projects became mature, the close collaboration was almost lost
§ PETSc occasionally tried new features introduced in the MPI standard

– MPI-3.0 process-shared memory to improve intra-node communication
• Not easier than two-sided for sparse-neighborhood & no obvious performance benefit

– MPI-3.0 revised one-sided in PetscSF implementation
• -sf_type window -sf_window_flavor <create|dynamic| allocate> -
sf_window_sync <fence|active|lock>

• Yet to show an advantage over two-sided
– MPI (persistent) neighborhood collectives

• -sf_type neighbor –sf_neighbor_persistent <bool>
– MPI_Iallreduce() in pipelined CG solver (-ksp_type pipecg)
– MPI_Ibarrier/Iprobe() with –build_twosided ibarrier*

• The ibarrer alg. [hoefler2010] performs better at large scale than the allreduce alg.
• Less reliable than allreduce, frequently run into errors with Intel MPI

– MPI large count (--with-64-bit-indices)

10

PETSc developers’ contribution to the MPI community
 -- MPI for Python and Rust maintainers

11

mpi4py
rsmpi

The enhanced PETSc/MPICH collaboration in
recent years

§ PETSc CI job coverage with MPICH on GPUs
– PETSc CI helped MPICH identify its excessive GPU memory usage
– MPICH helped PETSc discovery a serious GPU stream sync bug

§ PETSc is experimenting with the MPICH GPU stream extension
– -sf_use_gpu_aware_mpi <bool> (not steam-aware)
– -sf_use_stream_aware_mpi <bool> (experimental)

§ PETSc is experimenting with the MPI-5.0 ABI implemented in MPICH
– PETSc users might mess up the PETSc build time MPI (e.g., OpenMPI) with

user code build time MPI (e.g., MPICH)
– It is helpful to unify the MPI ABI

§ PETSc inspired the MPIX_THREADCOMM extension in MPICH
12

The “PETSc + OpenMP” dilemma

§ PETSc doesn’t support OpenMP because of the complexity and bad
performance

§ Some OpenMP-only codes want to call PETSc to leverage its tons of solvers
– Also want PETSc to be run in parallel to make use of the CPU cores

13

The MPICH MPIX_Threadcomm Solution
Mat A;

Vec x, b;

int nthreads = 4;

MPI_Comm comm;

PetscInitialize(&argc, &argv, NULL, NULL);

// user code building A, x, b etc

…

MPIX_Threadcomm_init(MPI_COMM_WORLD, nthreads, &comm);

#pragma omp parallel num_threads(nthreads)

{ Mat A2;

 Vec x2, b2;

 KSP ksp;

 MPIX_Threadcomm_start(comm); // comm’s size is 4

 MatCreate(comm, &A2);

 MatCreateVecs(A2, &x2, &b2);

 // Assemble A2, b2 from the shared A, b

 KSPSolve(ksp, b2, x2);

 // Transfer the solution x2 to x

 MatDestroy(&A2);

 MPIX_Threadcomm_finish(comm)

 }

MPIX_Threadcomm_free(&comm);

PetscFinalize();
14

• Run the test as a regular OMP code:
OMP_NUM_THREADS=8 ./test –args

• User’s sequential code (might use OpenMP)
• PETSc is initialized on a single process
• Build sequential petsc objects such as matrices and vectors

• Build parallel petsc objects on the threadcomm comm
• Somehow transfer data from the shared sequential A, b to

parallel A2, b2
• Other parts of the petsc code work as if they were run by

mpiexec –n 4 ./test
• Caveats: petsc needs to be thread safe, e.g., in logging
• Future work: provide a new preconditioner type PCOMP to

wrap around this stuff

Summary: MPI & MPICH’s use in PETSc

§ In 2024, PETSc can still build with MPI-2.1 without (performance) issues!!
§ PETSc users do not need MPI if they only use PETSc sequentially

– ./configure –-with-mpi=0
– petsc will use its fake single-process MPI (mpiuni) impl. to provide MPI APIs
– Maybe MPICH could take it over as others also like it (?)

§ MPICH is recommended by PETSc for users needing valgrind
§ The latest MPICH can be downloaded and installed by PETSc (many users use

that!)
– ./configure –-with-cc=gcc –-with-cxx=g++ --with-cuda

--download-mpich –download-mpich-device=<ch3:nemsis|..>

§ PETSc has 8000+ tests and 70+ CI jobs with many using MPICH for testing
15

Conclusion

§ PETSc is an excellent testbed and a real world inspiring example for MPI and
MPICH research

§ The closer the two projects collaborate, the better they can serve their users

16

