
SMPD PMI Wire Protocol Reference Manual

Version 0.1

DRAFT of September 9, 2004

Mathematics and Computer Science Division

Argonne National Laboratory

David Ashton

September 9, 2004

1

Contents

1 Introduction 1

2 SMPD manager topology 1

3 Child process environment 3

4 SMPD wire commands 4

4.1 Comand Format . 4

4.2 Commands . 5

4.3 spawn command . 6

5 string format 7

i

1 INTRODUCTION 1

1 Introduction

When a user builds MPICH2 they have the option to choose the SMPD pro-
cess manager to launch and manage processes in MPICH2 jobs. MPICH2
provides an implementation of smpd and mpiexec to launch MPICH2 jobs.
When user applications are built, they use the PMI library for smpd to
provide the implementation of PMI for communicating with SMPD pro-
cess managers. This document describes the environment and wire protocol
between the MPICH2 application and the SMPD manager.

If a process manager implementor replicates the environment and pro-
tocol described in this document, they would be able to launch and manage
MPICH2 jobs compiled for SMPD.

An SMPD manager communicates with its child process through envi-
ronment variables and a socket. This document describes the environment
and the wire protocol on that socket.

2 SMPD manager topology

This section describes how SMPD is organized in MPICH2. An implementa-
tion of a process manager that uses the protocol described in this document
is not required to use this topology. It is provided for reference.

In the idle state, SMPDs reside on each node unconnected. When a
new job is to be launched, mpiexec first selects a list of hosts to launch
a job on. Then it connects to the SMPDs and they fork or spawn new
managers resulting in a connected tree with mpiexec at the root. See figure 1.
This tree remains for the duration of the job. It can grow as a result of
spawn commands. Each SMPD manager has a id in the tree used to route
commands. Each manager can manage multiple child processes. The control
socket connections between the SMPD manager and the child processes are
referenced by context ids provided by the SMPD manager to the child when
it launches a process.

2 SMPD MANAGER TOPOLOGY 2

Figure 1: SMPD Manager tree

3 CHILD PROCESS ENVIRONMENT 3

3 Child process environment

SMPD managers launch and manage child processes in an MPICH2 job.
MPICH2 processes compiled with the SMPD PMI library expect the follow-
ing environment variables to be set:

PMI RANK = my rank in the process group (0 to N-1)

PMI SIZE = process group size (N)

PMI KVS = my keyval space name unique to my process group

PMI DOMAIN = my keyval space domain name

*PMI CLIQUE = my node neighbors in the form of a clique. A clique is a
comma separated list of ranges and numbers. Example: 0,2..4,7

PMI SMPD ID = my smpd manager node id

PMI SMPD KEY = ctx key value to be included with PMI commands
from this process.

**PMI SMPD FD = file descriptor/handle to convert into the PMI socket
context.

PMI SPAWN = 0 or 1 if this process was started by a PMI Spawn multiple
command.

**PMI ROOT HOST = root host to connect to to establish the PMI socket
context.

**PMI ROOT PORT = root listening port number

**PMI ROOT LOCAL = 0 or 1 if the root process is to act as the root
smpd manager. If PMI ROOT LOCAL is specfied and it is 1, the root
MPICH process starts a separate thread or process to act as the smpd
manager. This manager listens on the specified port for pmi socket
contexts to connect from all the processes in the job and handles smpd
pmi commands for them. It is an error if PMI ROOT HOST is not
the same as the host where rank 0 is launched.

* If not specified, default clique contains only the local process.

4 SMPD WIRE COMMANDS 4

** Only one option may be specified.

PMI SMPD FD is mutually exclusive with the PMI ROOT HOST/PMI ROOT PORT
pair. If PMI SMPD FD exists then the process uses that handle as its con-
nection to the SMPD manager otherwise it makes a socket connection to
the host/port described by PMI ROOT HOST/PMI ROOT PORT.

4 SMPD wire commands

This section describes the wire protocol for PMI commands from the child
process to the smpd manager.

4.1 Comand Format

Commands are variable length. Each command begins with a 13 byte
header. The header is a NULL terminated ascii string representation of
the length of the command to follow the header. After the header is a string
of the length described by the header. Both the header and the command
are NULL terminated. The header is always 13 bytes no matter where the
NULL character falls. The command string begins at the 14th byte and the
length of the command must include the NULL character.

Commands contain key=value strings to describe the components of the
command. All commands will have the following keys:

• cmd=command

• src=my smpd id

• dest=dest smpd id

• tag=command tag

• ctx key=pmi smpd key

Additional command specific keys are described in the following section.

4 SMPD WIRE COMMANDS 5

4.2 Commands

done
No more PMI commands, close the context. This command is sent
from the child directly to its SMPD manager and does not receive a
reply.

Example: cmd=done src=3 dest=3 tag=14 ctx key=0

exit on done
The root smpd manager can and should exit when all done commands
are received. This command is sent by the root process.

Example: cmd=exit on done src=1 dest=1 tag=13 ctx key=0

Is this command necessary? Shouldn’t the root smpd know that it is
a root smpd and exit automatically when all its pmi contexts close?

barrier
Barrier across a set of processes. Add name=barrier name value=number of participants.
The result command returns SUCCESS or FAIL.

Example: cmd=barrier src=2 dest=1 tag=3 ctx key=1 name=kvsname
value=2

dbcreate
Create a new keyval space. If name=kvsname is added to the command
then the keyval space is created with the provided name, otherwise
the implementation chooses a name. The result command returns
SUCCESS or FAIL and name=kvsname.

Example: cmd=dbcreate src=1 dest=1 tag=100 ctx key=0

dbdestroy
Destroy a keyval space. Add name=kvsname. The result command
returns SUCCESS or FAIL.

Example: cmd=dbdestroy src=4 dest=1 tag=13 ctx key=1 name=kvsname

dbput
Put a keyval into a kvs space. Add name=kvsname key=user key
value=user value. The result command returns SUCCESS or FAIL.

Example cmd=dbput src=3 dest=1 tag=100 ctx key=0 name=kvsname
key=foo value=bar

4 SMPD WIRE COMMANDS 6

dbget
Get a kevyal from a kvs space. Add name=kvsname key=user key.
The result command returns SUCCESS or FAIL and value=val.

Example: cmd=dbget src=4 dest=1 tag=0 ctx key=0 name=kvsname
key=foo

dbfirst
Start the keyval space iterator. Add name=kvsname. The result com-
mand returns SUCCESS or FAIL and key=key value=val.

Example: cmd=dbfirst src=1 dest=1 tag=22 ctx key=0 name=kvsname

dbnext
Get the next keyval from the iterator. Add name=kvsname. The result
command returns SUCCESS or FAIL and key=key value=val.

Example: cmd=dbnext src=2 dest=1 tag=12 ctx key=0 name=kvsname

spawn
Spawn a new process group. See the next section for a complete de-
scription.

result
The result of a previous command. Result commands will always have
two fields, cmd tag=command tag and result=result string. The
command tag matches the tag of the command the result command
refers to. The result string is SUCCESS or a failure message. Other
return fields will be present as specified by the issued command.

4.3 spawn command

The spawn command is issued by a single node to launch a set of processes
in a new process group.

The spawn command is used to implement PMI Spawn multiple.

The keys to the spawn command are the following:

ncmds = x number of commands

cmd0 = command

cmd1 = command

5 STRING FORMAT 7

...

argv0 = string1 string2 string3 ...

argv1 = string1 string2 string3 ...

...

maxprocs = n0 n1 n2 ... nx-1

nkeyvals = n0 n1 n2 ... nx-1

keyvals0 = ‘‘0=\‘‘key=val\’’ 1=\‘‘key=val\’’ ... n0-1=\‘‘key=val\’’’’
keyvals1 = ‘‘0=\‘‘key=val\’’ 1=\‘‘key=val\’’ ... n1-1=\‘‘key=val\’’’’
...

npreput = number of preput keyvals

preput = ‘‘0=\‘‘key=val\’’ 1=\‘‘key=val\’’ ... n-1=\‘‘key=val\’’’’

The ncmds key represents the size of the rest of the vector arguments.
There will be ncmds cmd and argv keys. maxprocs and nkeyvals will contain
ncmds entries. The values in maxprocs represent the requested number of
processes to launch for the corresponding cmd command. There will be
ncmds keyvals keys and each keyvals key will contain nx keys where nx
is the corresponding value in nkeyvals. npreput represents the number of
keys in the preput key. The keys in the preput key are to be put in the
keyval space of the spawned process group before any of the processes are
launched.

Example: cmd=spawn src=3 dest=0 tag=4 ctx key=0 ncmds=1 cmd0=myapp
argv0=‘‘one \‘‘two args\’’ three’’ maxprocs=4 nkeyvals=2 keyvals0=‘‘0=\‘‘host=toad\’’
1=\‘‘path=/home/me\’’’’ npreput=1 preput=‘‘0=\‘‘port=1244\’’’’

5 string format

This section describes the format of key=value elements in a stream.

stream := frame frame stream

frame := element frame char element separ char frame

REFERENCES 8

element := key delim char value

key := string

value := string

string := literal quoted

literal := array of chars without separators, deliminators, or quotes

quoted := quote char array-of-escaped-characters quote char

chars := ascii characters

escapted chars := ascii characters with escaped quote chars and es-
cape chars

quote char := ”

escape char := \
delim char := =

separ char := ’ ’

frame char := ’\0’

Example:

a=b ”my name”=”David Ashton” foo=”He said, \”Hi there.\””

References

	Introduction
	SMPD manager topology
	Child process environment
	SMPD wire commands
	Comand Format
	Commands
	spawn command

	string format

