
MPICH2 Installer’s Guide∗

Version 1.1.0a1

Mathematics and Computer Science Division

Argonne National Laboratory

William Gropp
Ewing Lusk

David Ashton
Pavan Balaji

Darius Buntinas
Ralph Butler

Anthony Chan
Dave Goodell

Jayesh Krishna
Guillaume Mercier

Rob Ross
Rajeev Thakur
Brian Toonen

August 11, 2008

∗This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Sci-
DAC Program, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

1

Contents

1 Introduction 1

2 Quick Start 1

2.1 Prerequisites . 1

2.2 From A Standing Start to Running an MPI Program 2

2.3 Compiler Optimization Levels 9

2.4 Common Non-Default Configuration Options 9

2.4.1 The Most Important Configure Options 10

2.4.2 Using the Absoft Fortran compilers with MPICH2 . . 11

2.5 Shared Libraries . 11

2.6 What to Tell the Users . 11

3 Migrating from MPICH1 12

3.1 Configure Options . 12

3.2 Other Differences . 12

4 Choosing the Communication Device 13

5 Installing and Managing Process Managers 14

5.1 mpd . 14

5.1.1 Configuring mpd . 14

5.1.2 System Requirements 15

5.1.3 Using mpd . 15

5.1.4 Options for mpd . 16

5.1.5 Running MPD on multi-homed systems 16

5.1.6 Running MPD as Root 17

i

5.1.7 Running MPD on SMP’s 17

5.1.8 Security Issues in MPD 18

5.2 SMPD . 19

5.2.1 Configuration . 19

5.2.2 Usage and administration 20

5.3 gforker . 20

6 Testing 21

7 Benchmarking 21

8 MPE 22

9 Windows Version 22

9.1 Binary distribution . 22

9.2 Source distribution . 23

9.3 cygwin . 24

10 All Configure Options 24

A Troubleshooting MPDs 27

A.1 Getting Started with mpd . 27

A.1.1 Following the steps . 28

A.2 Debugging host/network configuration problems 33

A.3 Firewalls, etc. 34

ii

1 INTRODUCTION 1

1 Introduction

This manual describes how to obtain and install MPICH2, the MPI-2 imple-
mentation from Argonne National Laboratory. (Of course, if you are reading
this, chances are good that you have already obtained it and found this doc-
ument, among others, in its doc subdirectory.) This Guide will explain how
to install MPICH so that you and others can use it to run MPI applications.
Some particular features are different if you have system administration
privileges (can become “root” on a Unix system), and these are explained
here. It is not necessary to have such privileges to build and install MPICH2.
In the event of problems, send mail to mpich2-maint@mcs.anl.gov. Once
MPICH2 is installed, details on how to run MPI jobs are covered in the
MPICH2 User’s Guide, found in this same doc subdirectory.

MPICH2 has many options. We will first go through a recommended,
“standard” installation in a step-by-step fashion, and later describe alterna-
tive possibilities.

2 Quick Start

In this section we describe a “default” set of installation steps. It uses the
default set of configuration options, which builds the sock communication
device and the MPD process manager, for languages C, C++, Fortran-77, and
Fortran-90 (if those compilers exist), with compilers chosen automatically
from the user’s environment, without tracing and debugging options. It uses
the VPATH feature of make, so that the build process can take place on a local
disk for speed.

2.1 Prerequisites

For the default installation, you will need:

1. A copy of the distribution, mpich2.tar.gz.

2. A C compiler.

3. A Fortran-77, Fortran-90, and/or C++ compiler if you wish to write
MPI programs in any of these languages.

2 QUICK START 2

4. Python 2.2 or later version, for building the default process manage-
ment system, MPD. Most systems have Python pre-installed, but you
can get it free from www.python.org. You may assume it is there
unless the configure step below complains.

5. Any one of a number of Unix operating systems, such as IA32-Linux.
MPICH2 is most extensively tested on Linux; there remain some dif-
ficulties on systems to which we do not currently have access. Our
configure script attempts to adapt MPICH2 to new systems.

Configure will check for these prerequisites and try to work around defi-
ciencies if possible. (If you don’t have Fortran, you will still be able to use
MPICH2, just not with Fortran applications.)

2.2 From A Standing Start to Running an MPI Program

Here are the steps from obtaining MPICH2 through running your own par-
allel program on multiple machines.

1. Unpack the tar file.

tar xfz mpich2.tar.gz

If your tar doesn’t accept the z option, use

gunzip -c mpich2.tar.gz | tar xf -

Let us assume that the directory where you do this is /home/you/libraries.
It will now contain a subdirectory named mpich2-1.1.0a1.

2. Choose an installation directory (the default is /usr/local/bin):

mkdir /home/you/mpich2-install

It will be most convenient if this directory is shared by all of the
machines where you intend to run processes. If not, you will have to
duplicate it on the other machines after installation. Actually, if you
leave out this step, the next step will create the directory for you.

2 QUICK START 3

3. Choose a build directory. Building will proceed much faster if your
build directory is on a file system local to the machine on which the
configuration and compilation steps are executed. It is preferable that
this also be separate from the source directory, so that the source
directories remain clean and can be reused to build other copies on
other machines.

mkdir /tmp/you/mpich2-1.1.0a1

4. Choose any configure options. See Section 2.4.1 for a description of
the most important options to consider.

5. Configure MPICH2, specifying the installation directory, and running
the configure script in the source directory:

cd /tmp/you/mpich2-1.1.0a1
/home/you/libraries/mpich2-1.1.0a1/configure \

-prefix=/home/you/mpich2-install |& tee configure.log

where the \ means that this is really one line. (On sh and its deriva-
tives, use 2>&1 | tee configure.log instead of |& tee configure.log).
Other configure options are described below. Check the configure.log
file to make sure everything went well. Problems should be self-
explanatory, but if not, send configure.log to mpich2-maint@mcs.anl.gov.
The file config.log is created by configure and contains a record
of the tests that configure performed. It is normal for some tests
recorded in config.log to fail.

6. Build MPICH2:

make |& tee make.log

This step should succeed if there were no problems with the preceding
step. Check make.log. If there were problems, send configure.log
and make.log to mpich2-maint@mcs.anl.gov.

7. Install the MPICH2 commands:

make install |& tee install.log

This step collects all required executables and scripts in the bin subdi-
rectory of the directory specified by the prefix argument to configure.

2 QUICK START 4

8. Add the bin subdirectory of the installation directory to your path:

setenv PATH /home/you/mpich2-install/bin:$PATH

for csh and tcsh, or

export PATH=/home/you/mpich2-install/bin:$PATH

for bash and sh. Check that everything is in order at this point by
doing

which mpd
which mpicc
which mpiexec
which mpirun

All should refer to the commands in the bin subdirectory of your
install directory. It is at this point that you will need to duplicate this
directory on your other machines if it is not in a shared file system
such as NFS.

9. MPICH2, unlike MPICH, uses an external process manager for scal-
able startup of large MPI jobs. The default process manager is called
MPD, which is a ring of daemons on the machines where you will run
your MPI programs. In the next few steps, you will get this ring up
and tested. The instructions given here will probably be enough to get
you started. If not, you should refer to Appendix A for troubleshoot-
ing help. More details on interacting with MPD can be found by
running mpdhelp or any mpd command with the --help option, or by
viewing the README file in mpich2/src/pm/mpd. The information
provided includes how to list running jobs, kill, suspend, or otherwise
signal them, and how to use the gdb debugger via special arguments
to mpiexec.

For security reasons, MPD looks in your home directory for a file
named .mpd.conf containing the line

secretword=<secretword>

where <secretword> is a string known only to yourself. It should not
be your normal Unix password. Make this file readable and writable
only by you:

2 QUICK START 5

cd $HOME
touch .mpd.conf
chmod 600 .mpd.conf

Then use an editor to place a line like:

secretword=mr45-j9z

into the file. (Of course use a different secret word than mr45-j9z.)

10. The first sanity check consists of bringing up a ring of one MPD on
the local machine, testing one MPD command, and bringing the “ring”
down.

mpd &
mpdtrace
mpdallexit

The output of mpdtrace should be the hostname of the machine you
are running on. The mpdallexit causes the mpd daemon to exit.
If you encounter problems, you should check Appendix A on trou-
bleshooting MPD.

11. The next sanity check is to run a non-MPI program using the daemon.

mpd &
mpiexec -n 1 /bin/hostname
mpdallexit

This should print the name of the machine you are running on. If not,
you should check Appendix A on troubleshooting MPD.

12. Now we will bring up a ring of mpd’s on a set of machines. Create a
file consisting of a list of machine names, one per line. Name this file
mpd.hosts. These hostnames will be used as targets for ssh or rsh,
so include full domain names if necessary. Check that you can reach
these machines with ssh or rsh without entering a password. You can
test by doing

ssh othermachine date

or

2 QUICK START 6

rsh othermachine date

If you cannot get this to work without entering a password, you will
need to configure ssh or rsh so that this can be done, or else use the
workaround for mpdboot in the next step.

13. Start the daemons on (some of) the hosts in the file mpd.hosts.

mpdboot -n <number to start> -f mpd.hosts

The number to start can be less than 1 + number of hosts in the file,
but cannot be greater than 1 + the number of hosts in the file. One mpd
is always started on the machine where mpdboot is run, and is counted
in the number to start, whether or not it occurs in the file. By default,
mpdboot will only start one mpd per machine even if the machine name
appears in the hosts file multiple times. The -1 option can be used
to override this behavior, but there is typically no reason for a user
to need multiple mpds on a single host. The -1 option (that’s the
digit one, not the letter el) exists mostly to support internal testing.
The --help option explains these as well as other useful options. In
particular, if your cluster has multiprocessor nodes, you might want
to use the --ncpus argument described in Section 5.1.7.

Check to see if all the hosts you listed in mpd.hosts are in the output
of

mpdtrace

and if so move on to the next step.

There is a workaround if you cannot get mpdboot to work because of
difficulties with ssh or rsh setup. You can start the daemons “by
hand” as follows:

mpd & # starts the local daemon
mpdtrace -l # makes the local daemon print its host

and port in the form <host>_<port>

Then log into each of the other machines, put the install/bin direc-
tory in your path, and do:

mpd -h <hostname> -p <port> &

2 QUICK START 7

where the hostname and port belong to the original mpd that you
started. From each machine, after starting the mpd, you can do

mpdtrace

to see which machines are in the ring so far. More details on mpdboot
and other options for starting the mpd’s are in mpich2-1.1.0a1/src/pm/mpd/README.

In case of persistent difficulties getting the ring of mpd’s up and run-
ning on the machines you want, please see Appendix A. There we
discuss the mpd’s in more detail and describe how you can use the
mpdcheck utility to diagnose problems with the networking configura-
tion of your systems.

14. Test the ring you have just created:

mpdtrace

The output should consist of the hosts where MPD daemons are now
running. You can see how long it takes a message to circle this ring
with

mpdringtest

That was quick. You can see how long it takes a message to go around
many times by giving mpdringtest an argument:

mpdringtest 100
mpdringtest 1000

15. Test that the ring can run a multiprocess job:

mpiexec -n <number> hostname

The number of processes need not match the number of hosts in the
ring; if there are more, they will wrap around. You can see the effect
of this by getting rank labels on the stdout:

mpiexec -l -n 30 hostname

You probably didn’t have to give the full pathname of the hostname
command because it is in your path. If not, use the full pathname:

2 QUICK START 8

mpiexec -l -n 30 /bin/hostname

16. Now we will run an MPI job, using the mpiexec command as specified
in the MPI-2 standard.

As part of the build process for MPICH2, a simple program to compute
the value of π by numerical integration is created in the mpich2-1.1.0a1/examples
directory. If the current directory is the top level MPICH2 build di-
rectory, then you can run this program with

mpiexec -n 5 examples/cpi

The number of processes need not match the number of hosts. The
cpi example will tell you which hosts it is running on. By default,
the processes are launched one after the other on the hosts in the mpd
ring, so it is not necessary to specify hosts when running a job with
mpiexec.

There are many options for mpiexec, by which multiple executables
can be run, hosts can be specified (as long as they are in the mpd ring),
separate command-line arguments and environment variables can be
passed to different processes, and working directories and search paths
for executables can be specified. Do

mpiexec --help

for details. A typical example is:

mpiexec -n 1 master : -n 19 slave

or

mpiexec -n 1 -host mymachine master : -n 19 slave

to ensure that the process with rank 0 runs on your workstation.

The arguments between ‘:’s in this syntax are called “argument sets,”
since they apply to a set of processes. More argments are described in
the User’s Guide.

The mpirun command from the original MPICH is still available, al-
though it does not support as many options as mpiexec. You might
want to use it in the case where you do not have the XML parser
required for the use of mpiexec.

If you have completed all of the above steps, you have successfully in-
stalled MPICH2 and run an MPI example.

2 QUICK START 9

2.3 Compiler Optimization Levels

MPICH2 can be configured with two sets of compiler flags: CFLAGS, CXXFLAGS,
FFLAGS, F90FLAGS (abbreviated as xFLAGS) and MPICH2LIB CFLAGS, MPICH2LIB CXXFLAGS,
MPICH2LIB FFLAGS, MPICH2LIB F90FLAGS (abbreviated as MPICH2LIB xFLAGS)
for compilation; LDFLAGS and MPICH2LIB LDFLAGS for linking. All these flags
can be set as part of configure command or through environment variables.
(CPPFLAGS stands for C preprocessor flags, which should NOT be set)

Both xFLAGS and MPICH2LIB xFLAGS affect the compilation of the MPICH2
libraries. However, only xFLAGS is appended to MPI wrapper scripts, mpicc
and friends.

MPICH2 libraries are built with default compiler optimization, -O2,
which can be modified by –enable-fast configure option. For instance, –
disable-fast disables the default optimization option. –enable-fast=O¡n¿ sets
default compiler optimization as -O¡n¿. For more details of –enable-fast, see
the output of ”configure –help”. Any other complicated optimization flags
for MPICH2 libraries have to be set throught MPICH2LIB xFLAGS. CFLAGS
and friends are empty by default.

For example, to build a ”production” MPICH2 environment with -O3
for all language bindings, one can simply do

./configure --enable-fast=O3

or

./configure --disable-fast MPICH2LIB_CFLAGS=-O3 \
MPICH2LIB_FFLAGS=-O3 \
MPICH2LIB_CXXFLAGS=-O3 \
MPICH2LIB_F90FLAGS=-O3

This will cause the MPICH2 libraries to be built with -O3, and -O3 will
not be included in the mpicc and other MPI wrapper script.

2.4 Common Non-Default Configuration Options

A list of configure options is found in Section 10. Here we comment on
some of them.

2 QUICK START 10

2.4.1 The Most Important Configure Options

–prefix Set the installation directories for MPICH2.

–enable-debuginfo Provide access to the message queues for debuggers
such as Totalview.

–enable-g Build MPICH2 with various debugging options. This is of in-
terest primarily to MPICH2 developers. The options

--enable-g=dbg,mem,log

are recommended in that case.

–enable-fast Configure MPICH2 for fastest performance at the expense of
error reporting and other program development aids. This is recom-
mended only for getting the best performance out of proven production
applications, and for benchmarking.

–enable-sharedlibs Build MPICH2 with shared libraries. For example,

--enable-sharedlibs=gcc for standard gcc on Linux

--enable-sharedlibs=osx-gcc for Mac OS X or

--enable-sharedlibs=solaris-cc for cc on Solaris

–with-pm Select the process manager. The default is mpd; also useful is
gforker. You can build with both process managers by specifying

--with-pm=mpd:gforker

–without-mpe Configure MPICH2 without the MPE package of program
development tools (including the Jumpshot performance viewer)

–with-java Set the location of Java installation. This option is necessary
only if the default Java installation in your PATH does not contain a
valid Java installation for Jumpshot, e.g.

--with-java=/opt/jdk1.6.0

2 QUICK START 11

2.4.2 Using the Absoft Fortran compilers with MPICH2

For best results, it is important to force the Absoft Fortran compilers to
make all routine names monocase. In addition, if lower case is chosen (this
will match common use by many programs), you must also tell the the Absoft
compiles to append an underscore to global names in order to access routines
such as getarg (getarg is not used by MPICH2 but is used in some of the
tests and is often used in application programs). We recommend configuring
MPICH2 with the following options

setenv F77 f77
setenv FFLAGS "-f -N15"
setenv F90FLAGS "-YALL_NAMES=LCS -YEXT_SFX=_"

./configure

2.5 Shared Libraries

Shared libraries are currently only supported for gcc on Linux and Mac OS
X and for cc on Solaris. To have shared libraries created when MPICH2 is
built, specify the following when MPICH2 is configured:

configure --enable-sharedlibs=gcc (on Linux)
configure --enable-sharedlibs=osx-gcc (on Mac OS X)
configure --enable-sharedlibs=solaris-cc (on Solaris)

2.6 What to Tell the Users

Now that MPICH2 has been installed, the users have to be informed of how
to use it. Part of this is covered in the User’s Guide. Other things users
need to know are covered here. (For example, whether they need to run
their own mpd rings or use a system-wide one run by root.)

3 MIGRATING FROM MPICH1 12

3 Migrating from MPICH1

MPICH2 is an all-new rewrite of MPICH1. Although the basic steps for
installation have remained the same (configure, make, make install), a
number of things have changed. In this section we attempt to point out
what you may be used to in MPICH1 that are now different in MPICH2.

3.1 Configure Options

The arguments to configure are different in MPICH1 and MPICH2; the
Installer’s Guide discusses configure. In particular, the newer configure
in MPICH2 does not support the -cc=<compiler-name> (or -fc, -c++, or
-f90) options. Instead, many of the items that could be specified in the
command line to configure in MPICH1 must now be set by defining an
environment variable. E.g., while MPICH1 allowed

./configure -cc=pgcc

MPICH2 requires

setenv CC pgcc

(or export CC=pgcc for ksh or CC=pgcc ; export CC for strict sh) before
./configure. Basically, every option to the MPICH-1 configure that does
not start with --enable or --with is not available as a configure option in
MPICH2. Instead, environment variables must be used. This is consistent
(and required) for use of version 2 GNU autoconf.

3.2 Other Differences

Other differences between MPICH1 and MPICH2 include the handling of
process managers and the choice of communication device.

For example, the new mpd has a new format and slightly different se-
mantics for the -machinefile option. Assume that you type this data into
a file named machfile:

bp400:2

4 CHOOSING THE COMMUNICATION DEVICE 13

bp401:2
bp402:2
bp403:2

If you then run a parallel job with this machinefile, you would expect
ranks 0 and 1 to run on bp400 because it says to run 2 processes there before
going on to bp401. Ranks 2 and 3 would run on bp401, and rank 4 on bp402,
e.g.:

mpiexec -l -machinefile machfile -n 5 hostname

produces:

0: bp400
1: bp400
2: bp401
3: bp401
4: bp402

4 Choosing the Communication Device

MPICH2 is designed to be build with many different communication devices,
allowing an implementation to be tuned for different communication fabrics.
A simple communication device, known as “ch3” (for the third version of
the “channel” interface) is provided with MPICH2 and is the default choice.

The ch3 device itself supports a variety of communication methods.
These are specified by providing the name of the method after a colon in the
--with-device configure option. For example, --with-device=ch3:ssm
selects the socket plus shared memory method. The supported methods
include:

ch3:nemesis This method is our new, high performance method. It has
been made the default communication channel starting the 1.1 release
of MPICH2. It supports sockets, shared memory, and Myrinet-GM at
present. It supports MPI THREAD MULTIPLE and other levels of thread
safety.

5 INSTALLING AND MANAGING PROCESS MANAGERS 14

ch3:sock This is the traditional communication method in MPICH2. It
uses sockets for all communications between processes. It supports
MPI THREAD MULTIPLE and other levels of thread safety.

ch3:ssm This method uses sockets between nodes and shared memory within
a node.

ch3:shm This method only uses shared memory and only works within a
single SMP. It does not support the MPI dynamic process routines
such as MPI Comm spawn.

Most installations should use ch3:nemesis for best performance. For
platforms that are not supported by nemesis (e.g., Solaris), the ch3:sock
method is suggested.

5 Installing and Managing Process Managers

MPICH2 has been designed to work with multiple process managers; that
is, although you can start MPICH2 jobs with mpiexec, there are different
mechanisms by which your processes are started. An interface (called PMI)
isolates the MPICH2 library code from the process manager. Currently
three process managers are distributed with MPICH2

mpd This is the default, and the one that is described in Section 2.2. It
consists of a ring of daemons.

smpd This one can be used for both Linux and Windows. It is the only
process manager that supports the Windows version of MPICH2.

gforker This is a simple process manager that creates all processes on a
single machine. It is useful for both debugging and on shared memory
multiprocessors.

5.1 mpd

5.1.1 Configuring mpd

The mpd process manager can be explicitly chosen at configure time by
adding

5 INSTALLING AND MANAGING PROCESS MANAGERS 15

--with-pm=mpd

to the configure argments. This is not necessary, since mpd is the default.

5.1.2 System Requirements

mpd consists of a number of components written in Python. The configure
script should automatically find a version of python in your PATH that has
all the features needed to run mpd. If for some reason you need to pick a
specific version of Python for mpd to use, you can do so by adding

--with-python=<fullpathname of python interpreter>

to your configure arguments. If your system doesn’t have Python, you can
get the latest version from http://www.python.org. Most Linux distribu-
tions include a moderately current version of Python. MPD requires release
2.2 or later.

The mpd process manager supports the use of the TotalView parallel
debugger from Etnus. If totalview is in your PATH when MPICH2 is con-
figured, then an interface module will be automatically compiled, linked,
and installed so that you can use TotalView to debug MPICH jobs (See
the User’s Guide under “Debugging”. You can also explicitly enable or
disable this capability with --enable-totalview or --disable-totalview
as arguments to configure.

5.1.3 Using mpd

In Section 2.2 you installed the mpd ring. Several commands can be used
to use, test, and manage this ring. You can find out about them by running
mpdhelp, whose output looks like this:

The following mpd commands are available. For usage of any specific one,
invoke it with the single argument --help .

mpd start an mpd daemon
mpdtrace show all mpd’s in ring
mpdboot start a ring of daemons all at once
mpdringtest test how long it takes for a message to circle the ring

5 INSTALLING AND MANAGING PROCESS MANAGERS 16

mpdallexit take down all daemons in ring
mpdcleanup repair local Unix socket if ring crashed badly
mpdlistjobs list processes of jobs (-a or --all: all jobs for all users)
mpdkilljob kill all processes of a single job
mpdsigjob deliver a specific signal to the application processes of a job
mpiexec start a parallel job

Each command can be invoked with the --help argument, which prints usage
information for the command without running it.

So for example, to see a complete list of the possible arguments for mpdboot,
you would run

mpdboot --help

5.1.4 Options for mpd

–help causes mpd to print a list and description of all options

In addition to the cmd-line options, mpd will also check for presence of
the environment variable MPICH PORT RANGE (note MPICH instead of MPD)
and use only the ports in that range for listening sockets. The range is
separated by a colon, e.g., 2000:8000.

5.1.5 Running MPD on multi-homed systems

If you plan to use one or more multi-homed systems, it is of course useful if
the default hostname is associated with the interface that mpd will need to
use for communications. If not however, you can cause mpd to use a specific
interface by using the --ifhn (interface-hostname) option, e.g.:

n1% mpd --ifhn=192.168.1.1 &

If you then run mpiexec on n1 connecting to that mpd, the mpiexec will
use the same ifhn for communications with remote processes that connect
back to it. mpiexec will also accept a -ifhn option (mpiexec –help) in the
unlikely event that you wish it to use a separate interface from the mpd.

mpdboot can also designate the ifhn to be used by both the local and
remote mpds which it starts, e.g.:

5 INSTALLING AND MANAGING PROCESS MANAGERS 17

n1% mpdboot --totalnum=3 --ifhn=192.168.1.1

where mpd.hosts contains:

n2 ifhn=192.168.1.2
n3 ifhn=192.168.1.3

will start one mpd locally, one on n2 and one on n3. Each will use the
respectively designated ifhn.

5.1.6 Running MPD as Root

MPD can run as root to support multiple users simultaneously. To do this,
it easiest to simply do the “make install” in the mpd sub-directory as root.
This will cause the mpdroot program to be installed in the bin directory with
setuid-root permissions. Individual users then have the option of starting
and using their own mpd rings, or they can run with a ring started by root.
To use root’s ring, they must use an option named MPD USE ROOT MPD. This
option may either be set as an environment variable or they can set it in
their own .mpd.conf file, e.g.:

MPD_USE_ROOT_MPD=1

When root starts the mpds in the ring, the procedure is the same as for a
regular user except that root’s configuration file is in /etc/mpd.conf (note
that there is no leading dot in the file name).

5.1.7 Running MPD on SMP’s

Typically one starts one mpd on each host. When a job is started with
mpiexec without any particular host specification, the processes are started
on the ring of hosts one at a time, in round-robin fashion until all the
processes have been started. Thus, if you start a four-process job on a ring
of two machines, hosta and hostb, then you will find ranks 0 and 2 on hosta
and ranks 1 and 3 on hostb. This might not be what you want, especially
if the machines are SMP’s and you would like to have consecutive ranks on
the same machine as much as possible. If you tell the mpd how many cpus
it has to work with by using the --ncpus argument, as in

5 INSTALLING AND MANAGING PROCESS MANAGERS 18

mpd --ncpus=2

then the number of processes started the first time the startup message
circles the ring will be determined by this argument. That is, in the above
four-process example, ranks 0 and 1 will be on hosta and ranks 2 and 3 will
be on hostb. This effect only occurs the first time around the ring. That
is if you start a six-process job on this ring (two mpd’s, each started with
--ncpus=2) you will get processes 0, 1, and 4 on hosta and 2, 3, and 5 on
hostb. This is for load-balancing purposes. (It is assumed that you do not
want 0, 1, 4, and 5 on hosta and only 2 and 3 on hostb; if that is what
you do want, you can control process placement explicitly on the mpiexec
command, as described in the User’s Guide.

5.1.8 Security Issues in MPD

Since the mpd process manager allows the remote execution of processes,
it needs to incorporate security features that prevent inappropriate or ma-
licious process creation by someone without permission to do so. In this
section we describe how mpd deals with a number of security issues.

The first issue is the starting of the mpd processes themselves. This is
done either by the user logging into each machine starting each mpd process
“by hand,” or else by using the mpdboot program. mpdboot uses ssh by
default, although the less secure rsh can be used if the user chooses.

The next issue occurs when a single new mpd joins a ring of existing
mpd’s. This occurs during mpdboot, or can occur later if the user wishes to
expand an existing ring. In this situation a “challenge-response” protocol is
followed. A user must have the same secretword set in his .mpd.conf file
on each machine. This file must be readable only by the user starting the
mpd; otherwise the mpd will refuse to read it. When mpd A wishes to join
an existing ring by connecting to mpd B, which is already in the ring, at the
port B is listening on, the following sequence of events occurs:

1. B temporarily accepts the connection.

2. B seeds the random number generator with the high-resolution part
of the time of day, generates a random number, and sends it to A.

3. A concatenates the random number with the value of secretword in

5 INSTALLING AND MANAGING PROCESS MANAGERS 19

.mpd.conf, encrypts it with md5, and sends the encrypted result to
B.

4. Meanwhile, B encrypts the (same) random number concatenated with
its value of secretword.

5. When B receives the encrypted value from A, it compares the en-
crypted value with its own.

6. If the values match, A is allowed to join the ring; otherwise the con-
nection is closed.

Note that the secret word is never sent over the connection in the clear, and
the use of the time of day means that there will be no repeating pattern of
challenges to be observed.

The third issue concerns how mpiexec connects to the local mpd. This is
done through a Unix socket in /tmp rather than through an INET socket.
Thus security is preserved through the security of the file system.

Once connections are established, the messages that are sent over them
are not encrypted. However, no security information is sent over these con-
nections.

5.2 SMPD

5.2.1 Configuration

You may add the following configure options, --with-pm=smpd, to build
and install the smpd process manager. The process manager, smpd, will be
installed to the bin sub-directory of the installation directory of your choice
specified by the --prefix option.

smpd process managers run on each node as stand-alone daemons and
need to be running on all nodes that will participate in MPI jobs. smpd
process managers are not connected to each other and rely on a known port
to communicate with each other. Note: If you want multiple users to use
the same nodes they must each configure their smpds to use a unique port
per user.

smpd uses a configuration file to store settings. The default location is
~/.smpd. This file must not be readable by anyone other than the owner and

5 INSTALLING AND MANAGING PROCESS MANAGERS 20

contains at least one required option - the access passphrase. This is stored
in the configuration file as phrase=<phrase>. Access to running smpds is
authenticated using this passphrase and it must not be your user password.

5.2.2 Usage and administration

Users will start the smpd daemons before launching mpi jobs. To get an
smpd running on a node, execute

smpd -s

Executing this for the first time will prompt the user to create a ~/.smpd
configuration file and passphrase if one does not already exist.

Then users can use mpiexec to launch MPI jobs.

All options to smpd:

smpd -s
Start the smpd service/daemon for the current user. You can add
-p <port> to specify the port to listen on. All smpds must use the
same port and if you don’t use the default then you will have to add -p
<port> to mpiexec or add the port=<port> to the .smpd configuration
file.

smpd -r
Start the smpd service/daemon in root/multi-user mode. This is not
yet implemented.

smpd -shutdown [host]
Shutdown the smpd on the local host or specified host. Warning: this
will cause the smpd to exit and no mpiexec or smpd commands can
be issued to the host until smpd is started again.

5.3 gforker

gforker is a simple process manager that runs all processes on a single node;
it’s version of mpiexec uses the system fork and exec calls to create the
new processes. To configure with the gforker process manager, use

6 TESTING 21

configure --with-pm=gforker ...

6 Testing

Once MPICH2 has been installed, you can test it by running some of
the example programs in the examples directory. A more thorough test
can be run with the command make testing. This will produce a sum-
mary on standard output, along with an XML version of the test results
in mpich2/test/mpi. In addition, running make testing from the top-
level (mpich2) directory will run tests of the commands, such as mpicc and
mpiexec, that are included with MPICH2.

Other MPI test suites are available from http://www.mcs.anl.gov/
mpi/mpi-test/tsuite.html. As part of the MPICH2 development, we
run the MPICH1, MPICH2, C++, and Intel test suites every night and
post the results on http://www.mcs.anl.gov/mpi/mpich1/micronotes/
mpich2-status/. Other tests are run on an occasional basis.

7 Benchmarking

There are many benchmarking programs for MPI implementations. Three
that we use are mpptest (http://www.mcs.anl.gov/mpi/mpptest), netpipe
(http://www.scl.ameslab.gov/netpipe), and SkaMPI (http://liinwww.
ira.uka.de/~skampi). Each of these has different strengths and weaknesses
and reveals different properties of the MPI implementation.

In addition, the MPICH2 test suite contains a few programs to test for
performance artifacts in the directory test/mpi/perf. An example of a per-
formance artifact is markedly different performance for the same operation
when performed in two different ways. For example, using an MPI datatype
for a non-contiguous transfer should not be much slower than packing the
data into a contiguous buffer, sending it as a contiguous buffer, and then
unpacking it into the destination buffer. An example of this from the MPI-1
standard illustrates the use of MPI datatypes to transpose a matrix “on the
fly,” and one test in test/mpi/perf checks that the MPI implementation
performs well in this case.

http://www.mcs.anl.gov/mpi/mpi-test/tsuite.html
http://www.mcs.anl.gov/mpi/mpi-test/tsuite.html
http://www.mcs.anl.gov/mpi/mpich1/micronotes/mpich2-status/
http://www.mcs.anl.gov/mpi/mpich1/micronotes/mpich2-status/
http://www.mcs.anl.gov/mpi/mpptest
http://www.scl.ameslab.gov/netpipe
http://liinwww.ira.uka.de/~skampi
http://liinwww.ira.uka.de/~skampi

8 MPE 22

8 MPE

MPICH2 comes with the same MPE (Multi-Processing Environment) tools
that are included with MPICH1. These include several trace libraries for
recording the execution of MPI programs and the Jumpshot and SLOG
tools for performance visualization. The MPE tools are built and installed
by default and should be available without requiring any additional steps.
The installation of MPE is documented in mpich2/src/mpe2/INSTALL and
the usage of MPE is documented in mpich2/src/mpe2/README and MPICH2
user’s guide.

9 Windows Version

9.1 Binary distribution

The Windows binary distribution uses the Microsoft Installer. Download
and execute mpich2-1.x.xxx.msi to install the binary distribution. The
default installation path is C:\Program Files\MPICH2. You must have ad-
ministrator privileges to install mpich2-1.x.xxx.msi. The installer installs
a Windows service to launch MPICH applications and only administrators
may install services. This process manager is called smpd.exe. Access to
the process manager is passphrase protected. The installer asks for this
passphrase. Do not use your user password. The same passphrase must be
installed on all nodes that will participate in a single MPI job.

Under the installation directory are three sub-directories: include, bin,
and lib. The include and lib directories contain the header files and li-
braries necessary to compile MPI applications. The bin directory contains
the process manager, smpd.exe, and the the MPI job launcher, mpiexec.exe.
The dlls that implement MPICH2 are copied to the Windows system32 di-
rectory.

You can install MPICH in unattended mode by executing

msiexec /q /I mpich2-1.x.xxx.msi

The smpd process manager for Windows runs as a service that can launch
jobs for multiple users. It does not need to be started like the unix version

9 WINDOWS VERSION 23

does. The service is automatically started when it is installed and when the
machine reboots. smpd for Windows has additional options:

smpd -start
Start the Windows smpd service.

smpd -stop
Stop the Windows smpd service.

smpd -install
Install the smpd service.

smpd -remove
Remove the smpd service.

smpd -register spn
Register the Service Principal Name with the domain controller. This
command enables passwordless authentication using kerberos. It must
be run on each node individualy by a domain administrator.

9.2 Source distribution

In order to build MPICH2 from the source distribution under Windows, you
must have MS Developer Studio .NET 2003 or later, perl and optionally Intel
Fortran 8 or later.

• Download mpich2-1.x.y.tar.gz and unzip it.

• Bring up a Visual Studio Command prompt with the compiler envi-
ronment variables set.

• Run winconfigure.wsf. If you don’t have a Fortran compiler add the
--remove-fortran option to winconfigure to remove all the Fortran
projects and dependencies. Execute winconfigure.wsf /? to see all
available options.

• open mpich2\mpich2.sln
• build the ch3sockRelease mpich2 solution

• build the ch3sockRelease mpich2s project

10 ALL CONFIGURE OPTIONS 24

• build the Release mpich2 solution

• build the fortRelease mpich2 solution

• build the gfortRelease mpich2 solution

• build the sfortRelease mpich2 solution

• build the channel of your choice. The options are sock, shm, and ssm.
The shm channel is for small numbers of processes that will run on a
single machine using shared memory. The shm channel should not be
used for more than about 8 processes. The ssm (sock shared memory)
channel is for clusters of smp nodes. This channel should not be used
if you plan to over-subscribe the CPU’s. If you plan on launching
more processes than you have processors you should use the default
sock channel. The ssm channel uses a polling progress engine that
can perform poorly when multiple processes compete for individual
processors.

9.3 cygwin

MPICH2 can also be built under cygwin using the source distribution and
the Unix commands described in previous sections. This will not build the
same libraries as described in this section. It will build a “Unix” distribution
that runs under cygwin.

10 All Configure Options

Here is a list of all the configure options currently recognized by the top-level
configure. It is the MPICH-specific part of the output of

configure --help

Not all of these options may be fully supported yet.

Optional Features:
--disable-FEATURE do not include FEATURE (same as --enable-FEATURE=no)
--enable-FEATURE[=ARG] include FEATURE [ARG=yes]

--enable-cache - Turn on configure caching

10 ALL CONFIGURE OPTIONS 25

--enable-echo - Turn on strong echoing. The default is enable=no.
--enable-strict - Turn on strict debugging with gcc
--enable-coverage - Turn on coverage analysis using gcc and gcov
--enable-error-checking=level - Control the amount of error checking.
level may be

no - no error checking
runtime - error checking controllable at runtime through environment

variables
all - error checking always enabled

--enable-error-messages=level - Control the amount of detail in error
messages. Level may be

all - Maximum amount of information
generic - Only generic messages (no information about the specific

instance)
class - One message per MPI error class
none - No messages

--enable-timing=level - Control the amount of timing information
collected by the MPICH implementation. level may be

none - Collect no data
all - Collect lots of data
runtime - Runtime control of data collected

The default is none.
--enable-g=option - Control the level of debugging support in the MPICH
implementation. option may be a list of common separated names including

none - No debugging
mem - Memory usage tracing
handle - Trace handle operations
dbg - Add compiler -g flags
log - Enable debug event logging
meminit - Preinitialize memory associated structures and unions to

eliminate access warnings from programs like valgrind
all - All of the above choices

--enable-fast - pick the appropriate options for fast execution. This
turns off error checking and timing collection

--enable-f77 - Enable Fortran 77 bindings
--enable-f90 - Enable Fortran 90 bindings
--enable-cxx - Enable C++ bindings
--enable-romio - Enable ROMIO MPI I/O implementation
--enable-debuginfo - Enable support for debuggers
--enable-nmpi-as-mpi - Use MPI rather than PMPI routines for MPI routines,
such as the collectives, that may be implemented in terms of other MPI
routines

--enable-mpe - Build the MPE (MPI Parallel Environment) routines
--enable-threads=level - Control the level of thread support in the
MPICH implementation. The following levels are supported.

10 ALL CONFIGURE OPTIONS 26

single - No threads (MPI_THREAD_SINGLE)
funneled - Only the main thread calls MPI (MPI_THREAD_FUNNELED)
serialized - User serializes calls to MPI (MPI_THREAD_SERIALIZED)
multiple(:impl) - Fully multi-threaded (MPI_THREAD_MULTIPLE)

The following implementations are supported.
global_mutex - a single global lock guards access to all MPI functions.

The default implementation is global_mutex.
For the ch3:sock channel, a separate build is no longer needed for thread-multiple.
It is compiled by default and is selectable at run time with MPI_Init_thread.
If MPI_Init_thread is not called, the default is funneled .
For other channels, the --enable-threads option is not supported currently, and
the default is funneled.
--enable-weak-symbols - Use weak symbols to implement PMPI routines (default)
--enable-sharedlibs=kind - Enable shared libraries. kind may be

gcc - Standard gcc and GNU ld options for creating shared libraries
osx-gcc - Special options for gcc needed only on OS/X
solaris-cc - Solaris native (SPARC) compilers for 32 bit systems
cygwin-gcc - Special options for gcc needed only for cygwin
none - same as --disable-sharedlibs

Only gcc, osx-gcc, and solaris-cc are currently supported

--enable-dependencies - Generate dependencies for sourcefiles. This
requires that the Makefile.in files are also created
to support dependencies (see maint/updatefiles)

--enable-timer-type=name - Select the timer to use
for MPI_Wtime and internal timestamps. name may be one of

gethrtime - Solaris timer (Solaris systems only)
clock_gettime - Posix timer (where available)
gettimeofday - Most Unix systems
linux86_cycle - Linux x86; returns cycle counts, not time in seconds
linuxalpha_cycle - Like linux86_cycle, but for Linux Alpha
gcc_ia64_cycle - IPF ar.itc timer

--enable-base-cache - Enable the use of a simple cache for the subsidieary
configure scripts.

Optional Packages:
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
--without-PACKAGE do not use PACKAGE (same as --with-PACKAGE=no)

--with-device=name - Specify the communication device for MPICH.
--with-pmi=name - Specify the pmi interface for MPICH.
--with-pm=name - Specify the process manager for MPICH.

Multiple process managers may be specified as long as they all use
the same pmi interface by separating them with colons. The
mpiexec for the first named process manager will be installed.

A TROUBLESHOOTING MPDS 27

Example: --with-pm=forker:mpd:remshell builds the three process
managers forker, mpd, and remshell; only the mpiexec from forker
is installed into the bin directory.

--with-logging=name - Specify the logging library for MPICH.
--with-mpe - Build the MPE (MPI Parallel Environment) routines
--with-htmldir=dir - Specify the directory for html documentation
--with-docdir=dir - Specify the directory for documentation
--with-cross=file - Specify the values of variables that configure cannot
determine in a cross-compilation environment
--with-namepublisher=name - Choose the system that will support

MPI_PUBLISH_NAME and MPI_LOOKUP_NAME. Options
include

no (no service available)
mpd
file:directory (optional directory)

--with-fwrapname=name - Specify name of library containing Fortran interface
routines
--with-thread-package=package - Thread package to use. Supported thread
packages include:

posix or pthreads - POSIX threads
solaris - Solaris threads (Solaris OS only)
none - no threads

If the option is not specified, the default package is ${MPE_THREAD_DEFAULT}.
If the option is specified, but a package is not given, then the default
is posix.

Notes on the configure options. The --with-htmldir and --with-docdir
options specify the directories into which the documentation will be installed
by make install.

A Troubleshooting MPDs

A.1 Getting Started with mpd

mpd stands for multi-purpose daemon. We sometimes use the term mpd
to refer to the combination of the mpd daemon and its helper programs
that collectively form a process management system for executing parallel
jobs, including mpich jobs. The mpd daemon must run on each host where
you wish to execute parallel programs. The mpd daemons form a ring to

A TROUBLESHOOTING MPDS 28

facilitate rapid process startup. Even a single mpd on a single host forms a
loop. Therefore, each host must be configured in such a way that the mpds
can connect to each other and pass messages via sockets.

It can be rather tricky to configure one or more hosts in such a way that
they adequately support client-server applications like mpd. In particular,
each host must not only know its own name, but must identify itself correctly
to other hosts when necessary. Further, certain information must be readily
accessible to each host. For example, each host must be able to map another
host’s name to its IP address. In this section, we will walk slowly through a
series of steps that will help to ensure success in running mpds on a single
host or on a large cluster.

If you can ssh from each machine to itself, and from each machine to each
other machine in your set (and back), then you probably have an adequate
environment for mpd. However, there may still be problems. For example,
if you are blocking all ports except the ports used by ssh/sshd, then mpd
will still fail to operate correctly.

To begin using mpd, the sequence of steps that we recommend is this:

1. get one mpd working alone on a first test node

2. get one mpd working alone on a second test node

3. get two new mpds to work together on the two test nodes

4. boot two new mpds on the two test nodes via mpdboot

A.1.1 Following the steps

1. Install mpich2, and thus mpd.

2. Make sure the mpich2 bin directory is in your path. Below, we will
refer to it as MPDDIR.

3. Kill old mpd processes. If you are coming to this guide from elsewhere,
e.g. a Quick Start guide for mpich2, because you encountered mpd
problems, you should make sure that all mpd processes are terminated
on the hosts where you have been testing. mpdallexit may assist in
this, but probably not if you were having problems. You may need to
use the Unix kill command to terminate the processes.

A TROUBLESHOOTING MPDS 29

4. Run a first mpd (alone on a first node). As mentioned above, mpd
uses client-server communications to perform its work. So, before run-
ning an mpd, let’s run a simpler program (mpdcheck) to verify that
these communications are likely to be successful. Even on hosts where
communications are well supported, sometimes there are problems as-
sociated with hostname resolution, etc. So, it is worth the effort to
proceed a bit slowly. Below, we assume that you have installed mpd
and have it in your path.

Select a test node, let’s call it n1. Login to n1.

First, we will run mpdcheck as a server and a client. To run it as a
server, get into a window with a command-line and run this:

n1 $ mpdcheck -s

It will print something like this:

server listening at INADDR_ANY on: n1 1234

Now, run the client side (in another window if convenient) and see
if it can find the server and communicate. Be sure to use the same
hostname and portnumber printed by the server (above: n1 1234):

n1 $ mpdcheck -c n1 1234

If all goes well, the server will print something like:

server has conn on
<socket._socketobject object at 0x40200f2c>

from (’192.168.1.1’, 1234)
server successfully recvd msg from client:

hello_from_client_to_server

and the client will print:

client successfully recvd ack from server:
ack_from_server_to_client

If the experiment failed, you have some network or machine configu-
ration problem which will also be a problem later when you try to use
mpd. Even if the experiment succeeded, but the hostname printed by

A TROUBLESHOOTING MPDS 30

the server was localhost, then you will probably have problems later
if you try to use mpd on n1 in conjunction with other hosts. In ei-
ther case, skip to Section A.2 “Debugging host/network configuration
problems.”

If the experiment succeeded, then you should be ready to try mpd on
this one host. To start an mpd, you will use the mpd command. To
run parallel programs, you will use the mpiexec program. All mpd
commands accept the -h or –help arguments, e.g.:

n1 $ mpd --help
n1 $ mpiexec --help

Try a few tests:

n1 $ mpd &
n1 $ mpiexec -n 1 /bin/hostname
n1 $ mpiexec -l -n 4 /bin/hostname
n1 $ mpiexec -n 2 PATH_TO_MPICH2_EXAMPLES/cpi

where PATH TO MPICH2 EXAMPLES is the path to the mpich2-1.0.3/examples
directory.

To terminate the mpd:

n1 $ mpdallexit

5. Run a second mpd (alone on a second node). To verify that things
are fine on a second host (say n2), login to n2 and perform the same
set of tests that you did on n1. Make sure that you use mpdallexit to
terminate the mpd so you will be ready for further tests.

6. Run a ring of two mpds on two hosts. Before running a ring of mpds
on n1 and n2, we will again use mpdcheck, but this time between the
two machines. We do this because the two nodes may have trouble
locating each other or communicating between them and it is easier
to check this out with the smaller program.

First, we will make sure that a server on n1 can service a client from
n2. On n1:

n1 $ mpdcheck -s

A TROUBLESHOOTING MPDS 31

which will print a hostname (hopefully n1) and a portnumber (say
3333 here). On n2:

n2 $ mpdcheck -c n1 3333

If this experiment fails, skip to Section A.2 “Debugging host/network
configuration problems”.

Second, we will make sure that a server on n2 can service a client from
n1. On n2:

n2 $ mpdcheck -s

which will print a hostname (hopefully n2) and a portnumber (say
7777 here). On n2:

n2 $ mpdcheck -c n2 7777

If this experiment fails, skip to Section A.2 “Debugging host/network
configuration problems”.

If all went well, we are ready to try a pair of mpds on n1 and n2.
First, make sure that all mpds have terminated on both n1 and n2.
Use mpdallexit or simply kill them with:

kill -9 PID_OF_MPD

where you have obtained the PID OF MPD by some means such as the
ps command.

On n1:

n1 $ mpd &
n1 $ mpdtrace -l

This will print a list of machines in the ring, in this case just n1. The
output will be something like:

n1_6789 (192.168.1.1)

The 6789 is the port that the mpd is listeneing on for connections
from other mpds wishing to enter the ring. We will use that port in a
moment to get an mpd from n2 into the ring. The value in parentheses
should be the IP address of n1.

On n2:

A TROUBLESHOOTING MPDS 32

n2 $ mpd -h n1 -p 6789 &

where 6789 is the listening port on n1 (from mpdtrace above). Now
try:

n2 $ mpdtrace -l

You should see both mpds in the ring.

To run some programs in parallel:

n1 $ mpiexec -n 2 /bin/hostname
n1 $ mpiexec -n 4 /bin/hostname
n1 $ mpiexec -l -n 4 /bin/hostname
n1 $ mpiexec -l -n 4 PATH_TO_MPICH2_EXAMPLES/cpi

where PATH TO MPICH2 EXAMPLES is the path to the mpich2-1.1.0a1/examples
directory.

To bring down the ring of mpds:

n1 $ mpdallexit

7. Boot a ring of two mpds via mpdboot. Please be aware that mpdboot
uses ssh by default to start remote mpds. It will expect that you can
run ssh from n1 to n2 (and from n2 to n1) without entering a password.

First, make sure that you terminate the mpd processes from any prior
tests.

On n1, create a file named mpd.hosts containing the name of n2:

n2

Then, on n1 run:

n1 $ mpdboot -n 2
n1 $ mpdtrace -l
n1 $ mpiexec -l -n 2 /bin/hostname

The mpdboot command should read the mpd.hosts file created above
and run an mpd on each of the two machines. The mpdtrace and
mpiexec show the ring up and functional. Options that may be useful
are:

A TROUBLESHOOTING MPDS 33

• --help use this one for extra details on all options
• -v (verbose)
• --chkup tries to verify that the hosts are up before starting mpds
• --chkuponly only performs the verify step, then ends

To bring the ring down:

n1 $ mpdallexit

If mpdboot works on the two machines n1 and n2, it will probably work
on your others as well. But, there could be configuration problems
using a new machine on which you have not yet tested mpd. An
easy way to check, is to gradually add them to mpd.hosts and try an
mpdboot with a -n arg that uses them all each time. Use mpdallexit
after each test.

A.2 Debugging host/network configuration problems

We use mpdcheck as our first attempt to debug host or network configuration
problems. If you run:

n1 $ mpdcheck --help

you should receive a fairly long help message describing a wide variety of
arguments which can be supplied to mpdcheck to help you debug.

The first thing to try is to simply login to a node, say n1 and run:

n1 $ mpdcheck

mpdcheck will produce no output here if it finds no problems. If mpdcheck
does find potenital problems, it will print them with *** at the beginning
of the line. You can cause mpdcheck to be verbose by using the -v option,
e.g.:

n1 $ mpdcheck -v

Also, if mpdcheck offers comments about how you might repair certain prob-
lems, you can get a longer version of those messages by using the -l option,
e.g.:

A TROUBLESHOOTING MPDS 34

n1 $ mpdcheck -l

If you run mpdcheck on each node and find no problems, you may still
wish to use it further to debug issues between two nodes. For example, you
might login to n1 and create file named mpd.hosts which contains the name
of another node which is having trouble communicating with n1, e.g. n2.
Then, you may want to run:

n1 $ mpdcheck -f mpd.hosts

This test will see if n1 is having trouble discovering information about n2.
If not, you wish to try:

n1 $ mpdcheck -f mpd.hosts -ssh

This will also try to test ssh support between n1 and n2.

If these 2 experiments go OK, you should probably try them again but
this time logged into n2 and trying to connect back to n1. Do not forget to
change the contents of mpd.hosts to contain the name of n1.

If none of these get you past the problems, you may need to ask for help.
If so, it will probably useful to run mpdcheck once more on each of the nodes
which are of concern:

n1 $ mpdcheck -pc
n2 $ mpdcheck -pc

These will produce quite a bit of output which may be useful in determining
the problem. The -pc option does not really try to offer any comemnts about
what may be wrong. It merely prints potentially useful debugging info.

A.3 Firewalls, etc.

If the output from any of mpdcheck, mpd, or mpdboot leads you to believe
that one or more of your hosts are having trouble communicating due to
firewall issues, we can offer a few simple suggestions. If the problems are
due to an “enterprise” firewall computer, then we can only point you to your
local network admin for assistance.

A TROUBLESHOOTING MPDS 35

In other cases, there are a few quick things that you can try to see if there
some common protections in place which may be causing your problems.

First, you might see if iptables is active. You will probably need to be
root to do this:

n1 # iptables -L

This will show a set of 3 current iptables chains being applied for each
of INPUT, FORWARD, and OUTPUT. If the chains are non-empty, then
you may have something blocked. This could be a result of a software
firewall package you are running (e.g. shorewall) or some home-grown set of
chains. If you are unfamiliar with iptables, you will need to get local help
to decipher the rules and determine if any of them may be affecting you.
There are options such as -F to iptables that will disable the chains, but
that is dangerous of course if you require them for protection.

Next, you might see if any tcp-wrappers are active. You may need to be
root to do this:

n1 # cat /etc/hosts.deny /etc/hosts.allow

If there are any uncommented lines, they likely designate any (or ALL)
daemons which have their tcp communications blocked. This can be partic-
ularly problematic for mpdboot which uses ssh (and thus the ssh daemon,
sshd).

Next, you might wish to see if you have available ephemeral ports:

n1 $ cat /proc/sys/net/ipv4/ip_local_port_range

This should print a range something like:

32768 61000

	Introduction
	Quick Start
	Prerequisites
	From A Standing Start to Running an MPI Program
	Compiler Optimization Levels
	Common Non-Default Configuration Options
	The Most Important Configure Options
	Using the Absoft Fortran compilers with MPICH2

	Shared Libraries
	What to Tell the Users

	Migrating from MPICH1
	Configure Options
	Other Differences

	Choosing the Communication Device
	Installing and Managing Process Managers
	mpd
	Configuring mpd
	System Requirements
	Using mpd
	Options for mpd
	Running MPD on multi-homed systems
	Running MPD as Root
	Running MPD on SMP's
	Security Issues in MPD

	SMPD
	Configuration
	Usage and administration

	gforker

	Testing
	Benchmarking
	MPE
	Windows Version
	Binary distribution
	Source distribution
	cygwin

	All Configure Options
	Troubleshooting MPDs
	Getting Started with mpd
	Following the steps

	Debugging host/network configuration problems
	Firewalls, etc.

