
MPICH2 Windows Development Guide∗

Version 1.4.1

Mathematics and Computer Science Division

Argonne National Laboratory

Pavan Balaji
Darius Buntinas
Ralph Butler
Anthony Chan
David Goodell
William Gropp
Jayesh Krishna
Rob Latham
Ewing Lusk

Guillaume Mercier
Rob Ross

Rajeev Thakur

Past Contributors:
David Ashton
Brian Toonen

August 24, 2011

∗This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Sci-
DAC Program, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

1

Contents

1 Introduction 1

2 Build machine 1

3 Test machine 1

4 Software 1

4.1 Packages . 1

5 Building MPICH2 2

5.1 Visual Studio automated 32bit build 3

5.1.1 Automated build from the source distribution 4

5.1.2 Building without Fortran 4

5.2 Platform SDK builds . 5

6 Distributing MPICH2 builds 6

7 Testing MPICH2 7

7.1 Testing from scratch . 7

7.2 Testing a built mpich2 directory 7

7.3 Testing an existing installation 8

8 Development issues 8

9 Runtime environment 8

9.1 User credentials . 9

9.2 MPICH2 channel selection . 9

9.3 MPI apps with GUI . 10

i

9.4 Security . 11

9.5 Firewalls . 13

9.6 MPIEXEC options . 13

9.7 SMPD process manager options 20

9.8 Debugging jobs by starting them manually 23

9.9 Debugging jobs using MPI Cluster Debugger 24

9.10 Environment variables . 25

9.11 Compiling . 30

9.11.1 Visual Studio 6.0 . 30

9.11.2 Visual Studio 2005 . 30

9.11.3 Cygwin and MinGW GNU compilers 31

9.12 Performance Analysis . 32

9.12.1 Tracing MPI calls using the MPIEXEC Wrapper . . . 33

9.12.2 Tracing MPI calls from the command line 33

9.12.3 Customizing logfiles 34

ii

1 INTRODUCTION 1

1 Introduction

This manual describes how to set up a Windows machine to build and test
MPICH2 on.

2 Build machine

Build a Windows XP or Windows Server 2003 machine. This machine should
have access to the internet to be able to download the MPICH2 source code.

3 Test machine

Build a Windows XP or Windows Server 2003 machine on a 32bit CPU. Also
build a Windows Server 2003 X64 machine to test the Win64 distribution.

4 Software

This section describes the software necessary to build MPICH2.

4.1 Packages

To build MPICH2 you will need:

1. Microsoft Visual Studio 2005

2. The latest version of Microsoft .NET framework

3. Microsoft Platform SDK

4. Cygwin - full installation

5. Intel Fortran compiler IA32

6. Intel Fortran compiler EMT64

7. Java SDK

5 BUILDING MPICH2 2

Microsoft Visual Studio 2005 can be found on the CDs from an MSDN
subscription.

The Platform SDK can also be found on the MSDN CDs or downloaded
from Microsoft.com. The latest version as of the writing of this document
was Platform SDK - Windows Server 2003 SP1. The platform SDK usually
has an up-to-date version of headers and libraries.

The Intel Fortran compilers need to be installed after Developer Studio
and the PSDK because they integrate themselves into those two products.
The regular IA32 compiler needs to be installed and the EMT64 compiler
needs to be installed. They are two separate packages and they require a
license file to use. The license file is for a single user on a single machine.

Cygwin needs to be installed to get svn, perl and ssh. By default the
Cygwin installer might not install all the required packages, so make sure
that the required packages are selected during the install. MPICH2 also re-
quires autoconf version 2.62 or above. The OpenPA library used by MPICH2
requires the automake package. Select to use the DOS file format when in-
stalling Cygwin.

Assuming you installed Cygwin to the default c:\cygwin directory, add
c:\cygwin\bin to your PATH environment variable. This is required so the
automated scripts can run tools like ssh and perl without specifying the full
path.

The Java SDK needs to be installed so the logging library can be com-
piled. After installing the SDK set the JAVA HOME environment variable
to point to the installation directory.

Run the following command from a command prompt to change the
Windows script engine from GUI mode to console mode:

cscript //H:cscript

5 Building MPICH2

This section describes how to make various packages once you have a working
build machine.

5 BUILDING MPICH2 3

5.1 Visual Studio automated 32bit build

The easist way to build an MPICH2 distribution is to use the Visual Studio
environment and the makewindist.bat script from the top level of the mpich2
source tree. You can check out mpich2 from SVN or you can simply copy
this batch file from the distribution. The batch file knows how to check out
mpich2 so it the only file required to make a distribution.

The product GUIDs need to be changed when a new release is created.
To do this run “perl update windows version <new version>”. Run
this script with mpich2/maint as the current directory so the project files
can be found. Example:

perl update_windows_version 1.0.8

Or you can modify the project files by hand. Edit mpich2/maint/mpich2i.vdproj.
The ProductCode and PackageCode entries need to be changed to use new
GUIDs. Under Unix or Windows, uuidgen can be used to generate a new
GUID. The ProductVersion entry needs to be changed to match the version
of MPICH2. Once the version and GUIDs have been updated, commit the
changes to mpich2i.vdproj to SVN. Now you can build a distribution.

Bring up a build command prompt by selecting Start→Progams→Microsoft
Visual Studio 2005→Visual Studio 2005 Tools→Visual Studio 2005 Com-
mand Prompt.

Change directories to wherever you want to create the distribution.
mpich2 will be checked out under the current directory. Run the makewindist
batch file:

makewindist.bat --with-checkout

The batch file executes the following steps:

1. Check out trunk from the MPICH2 svn repository.

2. Run maint/updatefiles to generate the autogenerated files

3. Run “winconfigure.wsf --cleancode” to configure mpich2 for Win-
dows and output all the generated files like mpi.h and the fortran
interface files, etc.

5 BUILDING MPICH2 4

4. Run the Visual Studio command line tool to build all the components
of MPICH2. This includes each of the channels - sock, nemesis, ssm,
shm, and the multi-threaded sock channel. Two versions of each chan-
nel are built, the regular release build and the rlog profiled version.
The mpi wrapper channel selector dll is built and three Fortran inter-
faces are built, one for each set of common symbol types and calling
conventions. mpiexec and smpd are built along with the Windows GUI
tools and the Cygwin libraries. (These are the Cygwin link libraries
to use the Windows native build of MPICH2, not a Unix-style build
of MPICH2 under Cygwin.)

5. Package up everthing into maint\ReleaseMSI\mpich2.msi.

When the batch file is finished you will be left with a mpich2.msi file
that can be used to install MPICH2 on any Win32 machine. This file can
be re-named to match the release naming conventions.

5.1.1 Automated build from the source distribution

Follow the steps mentioned below to build MPICH2 from a source tarball.

1. unzip/untar the source distribution

2. Open a Visual Studio Command Prompt

3. cd into the mpich2xxx directory

4. execute “winconfigure.wsf --cleancode”

5. execute “makewindist.bat --with-curdir”

5.1.2 Building without Fortran

If you don’t have a Fortran compiler you can use winconfigure.wsf to re-
move the Fortran projects. Execute winconfigure.wsf --remove-fortran

--cleancode Then you can build the projects without Fortran support. If
you want to use the makewindist.bat script you will need to remove the
Fortran lines from it before executing it.

5 BUILDING MPICH2 5

5.2 Platform SDK builds

The makefile in the mpich2\winbuild directory builds a distribution based
on the compilers specified in the environment. The following targets can all
be built with this mechanism:

• Win64 X64

• Win64 IA64

• Win32 x86

Follow the steps below to build MPICH2.

1. Open a Cygwin bash shell and check out mpich2:

svn checkout https://svn.mcs.anl.gov/repos/mpi/mpich2/trunk

mpich2.

2. cd into mpich2 directory

3. run maint/updatefiles

4. Open a Visual Studio command prompt

5. From within the Visual Studio command prompt run winconfigure.wsf
--cleancode

To build the Win64 X64 distribution do the following:

1. Bring up a build command prompt from the PSDK. It can be found
here: Start→Programs→Microsoft Platform SDK for Windows Server
2003 SP1→Open Build Environment Window→ Windows Server 2003
64-bit Build Environment→Set Win Svr 2003 x64 Build Env (Retail)

2. Run \Program Files\Intel\Fortran\compiler80\Ia32e\Bin\ifortvars.bat

3. cd into mpich2\winbuild

4. run build.bat 2>&1 | tee build.x64.out

6 DISTRIBUTING MPICH2 BUILDS 6

For building the installer for Win64 x64, open the mpich2 solution file,
mpich2.sln, using Visual Studio 2005 and build the Installerx64 solution.
The installer, mpich2.msi will be available at mpich2\maint\ReleaseMSIx64
directory.

The Visual Studio 2005 compiler provides a Cross tools command prompt
for building X64 applications. However the current makefile depends on
environment variables not available with the Cross tools command prompt.

To build the Win64 IA64 distribution do the following:

1. Bring up a build command prompt from the PSDK. It can be found
here: Start→Programs→Microsoft Platform SDK for Windows Server
2003 SP1→Open Build Environment Window→ Windows Server 2003
64-bit Build Environment→Set Win Svr 2003 IA64 Build Env (Retail)

2. Run \Program Files\Intel\Fortran\compiler80\Itanium\Bin\ifortvars.bat

3. cd into mpich2\winbuild

4. run build.bat 2>&1 | tee build.ia64.out

To build the Win32 x86 distribution do the following:

1. Bring up a build command prompt from the PSDK. It can be found
here: Start→Programs→Microsoft Platform SDK for Windows Server
2003 SP1→Open Build Environment Window→ Windows 2000 Build
Environment→Set Windows 2000 Build Environment (Retail)

2. Run \Program Files\Intel\Fortran\compiler80\Ia32\Bin\ifortvars.bat

3. cd into mpich2\winbuild

4. run build.bat 2>&1 | tee build.x86.out

6 Distributing MPICH2 builds

If you built an .msi file using the Visual Studio build process 5.1 then all
you have to do is rename the mpich2.msi file to something appropriate like
mpich2-1.0.3-1-win32-ia32.msi

7 TESTING MPICH2 7

If you built using the Platform SDK build process 5.2 then the output
files are left in their build locations and need to be collected and put in a
zip file for distributing. This process should be automated with a script.

7 Testing MPICH2

Run the testmpich2.wsf script to checkout mpich2, build it, install it,
checkout the test suites, build them, run the test suites, and collect the
results in a web page.

7.1 Testing from scratch

Explain the use of testmpich2.wsf.

Run “testmpich2.wsf” without any parameters and it will create a
testmpich2 subdirectory and check out into that directory mpich2 and the
test suites - c++, mpich, intel and mpich2. It will then build mpich2 and
all the tests from the test suites. Then it will run the tests and place a
summary in testmpich2\summary\index.html.

7.2 Testing a built mpich2 directory

Explain how to run testmpich2.wsf if you have the mpich2 source tree on
a machine and you have already built all of mpich2.

Here is a sample batch file to test mpich2 that has already been built in
c:\mpich2:

testmpich2.wsf /mpich2:c:\mpich2 /make- /configure- /buildbatch

pushd testmpich2\buildMPICH

call mpich_cmds.bat

popd

pushd testmpich2\buildCPP

call cpp_cmds.bat

popd

pushd testmpich2\buildINTEL

call intel_cmds.bat

popd

8 DEVELOPMENT ISSUES 8

pushd testmpich2\buildMPICH2

call mpich2_cmds.bat

popd

testmpich2.wsf /mpich2:c:\mpich2 /make- /configure- /summarize

7.3 Testing an existing installation

Explain the use of testmpich2.wsf to test an existing installation, one that
was installed with the .msi distribution.

8 Development issues

This section describes development issues that are particular to the Windows
build.

Whenever a .h.in file is created on the Unix side, winconfigure.wsf needs
to be updated to create the .h file from the .h.in file. Copy and paste an
existing section in winconfigure.wsf that already does this and rename the
file names.

When new definitions are added to the .h.in files these definitions, usually
in the form HAVE FOO or USE FOO, need to be added to the AddDefi-
nitions function in winconfigure.wsf. Simply add new cases to the big case
statement as needed. winconfigure.wsf warns you of definitions that are not
in the case statement.

Whenever a @FOO@ substitution is added on the Unix side, winconfig-
ure.wsf needs to be updated to handle the substitution. Find the ReplaceAts
function in winconfigure.wsf and add the substitution to the big case state-
ment. winconfigure.wsf warns you of new substitutions that have not been
added to the case statement.

9 Runtime environment

This section describes the MPICH2 environment that is particular to Win-
dows.

9 RUNTIME ENVIRONMENT 9

9.1 User credentials

mpiexec must have the user name and password to launch MPI applications
in the context of that user. This information can be stored in a secure
encrypted manner for each user on a machine. Run mpiexec -register to
save your username and password. Then mpiexec will not prompt you for
this information.

This is also true for a nightly build script. The user context under which
the script is run must have saved credentials so mpiexec doesn’t prompt for
them. So scripts won’t hang, mpiexec provides a flag, -noprompt, that will
cause mpiexec to print out errors in cases when it normally would prompt for
user input. This can also be specified in the environment with the variable
MPIEXEC NOPROMPT.

You can also save more than one set of user credentials. Add the option
-user n to the -register, -remove, -validate, and mpiexec commands
to specify a saved user credential other than the default. The parameter n
is a non-zero positive number. For example this will save credentials in slot
1:

mpiexec -register -user 1

And this command will use the user 3 to launch a job:

mpiexec -user 3 -n 4 cpi.exe

User credentials can also be specified in a file using the -pwdfile filename

option to mpiexec. Put the username on the first line of the file and the
password on the second line. If you choose this option you should make sure
the file is only readable by the current user.

9.2 MPICH2 channel selection

MPICH2 for Windows comes with multiple complete implementations of
MPI. These are called channels and each build represents a different trans-
port mechanism used to move MPI messages. The default channel (sock)
uses sockets for communication. There is channel that use only shared
memory (shm). There are two channels that uses both sockets and shared

9 RUNTIME ENVIRONMENT 10

memory (nemesis, ssm). And there is a thread-safe version of the sockets
channel (mt). We recommend users to use the sock, mt or nemesis channels.
The shm and ssm channels will soon be deprecated.

The short names for the channels are: sock, nemesis, shm, ssm, mt.

These channels can be selected at runtime with an environment variable:
MPICH2 CHANNEL. The following is an example that uses the nemesis
channel instead of the default sockets channel:

mpiexec -env MPICH2_CHANNEL nemesis -n 4 myapp.exe

or

mpiexec -channel nemesis -n 4 myapp.exe

If you specify auto for the channel then mpiexec will automatically
choose a channel for you.

mpiexec -channel auto -n 4 myapp.exe

The rules are:

1. If numprocs is less than 8 on one machine, use the shm channel

2. If running on multiple machines, use the ssm channel. This channel
can be changed using winconfigure.

9.3 MPI apps with GUI

Many users on Windows machines want to build GUI apps that are also MPI
applications. This is completely acceptable as long as the application follows
the rules of MPI. MPI Init must be called before any other MPI function
and it needs to be called soon after each process starts. The processes must
be started with mpiexec but they are not required to be console applications.

The one catch is that MPI applications are hidden from view so any
Windows that a user application brings up will not be able to be seen.
mpiexec has an option to allow the MPI processes on the local machine
to be able to bring up GUIs. Add -localroot to the mpiexec command to
enable this capability. But even with this option, all GUIs from processes
on remote machines will be hidden.

9 RUNTIME ENVIRONMENT 11

So the only GUI application that MPICH2 cannot handle by default
would be a video-wall type application. But this can be done by running
smpd.exe by hand on each machine instead of installing it as a service. Log
on to each machine and run “smpd.exe -stop” to stop the service and then
run “smpd.exe -d 0” to start up the smpd again. As long as this process is
running you will be able to run applications where every process is allowed
to bring up GUIs.

9.4 Security

MPICH2 can use Microsoft’s SSPI interface to launch processes without
using any user passwords. This is the most secure way to launch MPI jobs
but it requires the machines to be configured in a certain way.

• All machines must be part of a Windows domain.

• Each machine must have delegation enabled.

• Each user that will run jobs must be allowed to use delegation.

If the machines are set up this way then an administrator can set up
MPICH2 for passwordless authentication. On each node, a domain admin-
istrator needs to execute the following: “smpd -register spn”.

Then a user can add the -delegate flag to their mpiexec commands and
the job startup will be done without any passwords. Example:

mpiexec -delegate -n 3 cpi.exe

With SSPI enabled you can also control access to nodes with job objects.

First the nodes need to be set up so that only SSPI authentication is
allowed. An administrator can run the following on each node:

1. smpd.exe -set sspi protect yes

2. smpd.exe -set jobs only yes

3. smpd.exe -restart

9 RUNTIME ENVIRONMENT 12

These settings mean that authentication must be done through SSPI and
mpiexec commands will only be accepted for registered jobs.

To register jobs an administrator or a scheduler running with adminis-
trator privileges can execute the following command:

mpiexec.exe -add_job <name> <domain\username> [-host <hostname>]

This adds a job called “name” for the specified user on either the local or
specified host. Any name can be used but it must not collide with another
job with the same name on the same host. The command must be executed
for each host that is to be allocated to the user.

Then when the job has finished or the allotted time has expired for the
user to use the nodes the following command can be executed:

mpiexec.exe -remove_job <name> [-host <hostname>]

This command removes the job from the local or specified host. Any pro-
cesses running on the host under the specified job name will be terminated
by this command.

So -add job and -remove job can be used by a scheduler to create a
window when a user is allowed to start jobs on a set of nodes.

When the window is open the user can run jobs using the job name.
First the user must run:

mpiexec.exe -associate_job <name> [-host <hostname>]

This will associate the user’s token with the job object on the local or speci-
fied host. This must be done for all of the hosts allocated to the user. Then
the user can issue mpiexec commands. The mpiexec commands are of the
usual format except they must contain one extra option - “-job <name>”.
This job name must match the job allocated by the -add job command. So
a typical command would look like this:

mpiexec.exe -job foo -machinefile hosts.txt -n 4 myapp.exe

Multiple mpiexec commands can be issued until the -remove job command
is issued. This allows the users to issue multiple mpiexec commands and

9 RUNTIME ENVIRONMENT 13

multiple MPI Comm spawn commands all using the same job name until
the job is removed from the nodes.

The rationale for the design where an adminstrator can create and de-
stroy jobs but the user must first associate the job with his own token before
running jobs is so that the administrator does not need to know the user’s
password. In order for an administrator to do both the job allocation and as-
sociation he would have to call LogonUser with the user name and password
for each user that submits a job request.

9.5 Firewalls

Windows comes with a default firewall that is usually turned on by default.
Firewalls block all TCP ports by default which renders MPICH2 applications
inoperable because the default communication mechanism used by MPICH2
are sockets on arbitrary ports assigned by the operating system. This can
be solved in several ways:

• Turn off the firewall completely.

• MPICH2 applications can be limited to a range of TCP ports using the
MPICH PORT RANGE environment variable. If you set your firewall
to allow the same port range then MPICH2 applications will run.

• Leave the Windows firewall on and allow exceptions for your MPICH2
applications. This can be done through the Security Center module
of the Windows Control Panel. Click the Windows Firewall option in
the Security Center to bring up the properties page and select the Ex-
ceptions tab. Here you can add each MPICH2 application to exempt.
Note that this exception includes the path to the executable so if you
move the executable you will have to exempt the new location. This
solution obviously only will work for a small number of applications
since managing a large list would be difficult. Make sure you add
mpiexec.exe and the smpd.exe process manager to this exception list.

9.6 MPIEXEC options

This section describes all the options to mpiexec.exe

9 RUNTIME ENVIRONMENT 14

• -add job job name domain\user [-host hostname] Create a job ob-
ject on the local or specified host for the specified user. Administrator
privileges are required to execute this command.

• -associate job job name [-host hostname] Associate the current
user token with the specified job on the local or specified host. The
current user must match the user specifed by the -add job job name

username command.

• -binding process binding scheme This option is currently available
only under Windows. It allows the user to specify a process binding
scheme for the MPI processes. Currently auto and user are the sup-
ported binding schemes. Using auto as the process binding scheme
the process manager will choose the process binding scheme automati-
cally taking into account the load on system resources like caches. The
user binding scheme can be used to provide a user defined binding for
the MPI processes. The supported formats for specifying the binding
schemes are provided below.

-binding auto

-binding user:core1,core2

where core1 and core2 represent the logical processor ids. The logical
processor ids specified are used in a round robin fashion to bind the
MPI processes to the logical processors. Some examples are provided
below.

mpiexec -n 4 -binding auto cpi.exe

In the above example the process manager binds the MPI processes to
the available cores automatically as mentioned above.

mpiexec -n 3 -binding user:1,3 cpi.exe

In the example above the process manager binds MPI process with
rank 0 to logical processor 1, rank 1 to logical processor 3, rank 2 to
logical processor 1.

• -channel channel name This option is only available under Windows
and allows the user to select which channel implementation of MPICH2
to select at runtime. The current channels supported are sock, mt,
ssm, and shm. These represent the sockets, multi-threaded sockets,
sockets plus shared memory, and shared memory channels. The shared
memory channels only work on one node. The sockets, multi-threaded
sockets, and sockets plus shared memory channels work on multiple

9 RUNTIME ENVIRONMENT 15

nodes. There are also profiled versions of the channels that produce
RLOG files for each process when selected. They are named p, mtp,
ssmp, and shmp. See the section on channel selection for additional
information.

• -configfile filenameUse the specified job configuration file to launch
the job. Each line in the file represents a set of options just like you
would enter them on the mpiexec command line. The one difference
is that there are no colons in the file. The colons are replaced by
new-lines.

• -delegate Specify that you want to use passwordless SSPI delegation
to launch processes. The machines must be configured to use SSPI as
described in the section on security.

• -dir drive:\my\working\directory Specify the working directory
for the processes.

• -env variable value Specify an environment variable and its value
to set in the processes’ environments. This option can be specified
multiple times.

• -exitcodes Specify that the exit code of each process should be
printed to stdout as each processes exits.

• -file filename Use the specified implementation specific job con-
figuration file. For Windows this option is used to specify the old
MPICH 1.2.5 configuration file format. This is useful for users who
have existing configuration files and want to upgrade to MPICH2.

• -genvlist a,b,c,d... Specify a list of environment variables to
taken from the environment local to mpiexec and propagated to the
launched processes.

• -hide console Detach from the console so that no command prompt
window will appear and consequently not output will be seen.

• -host hostname Specify that the processes should be launched on a
specific host.

• -hosts n host1 host2 host3 ... Specify that the processes should
be launched on a list of hosts. This option replaces the -n x option.

9 RUNTIME ENVIRONMENT 16

• -hosts n host1 m1 host2 m2 host3 m3 ... Specify that the pro-
cesses should be launched on a list of hosts and how many processes
should be launched on each host. The total number of processes
launched is m1 + m2 + m3 + ... mn.

• -impersonate Specify that you want to use passwordless SSPI imper-
sonation to launch processes. This will create processes on the remote
machines with limited access tokens. They wil not be able to open
files on remote machines or access mapped network drives.

• -job job name Specify that the processes should be launched under
the specifed job object. This can only be used after successful calls to
-add job and -associate job.

• -l This flag causes mpiexec to prefix output to stdout and stderr with
the rank of the process that produced the output. (This option is the
lower-case L not the number one)

• -localonly x or -localonly Specify that the processes should only
be launched on the local host. This option can replace the -n x option
or be used in conjunction with it when it is only a flag.

• -localroot Specify that the root process should be launched on the
local machine directly from mpiexec bypassing the smpd process man-
ager. This is useful for applications that want to create windows from
the root process that are visible to the interactive user. The smpd
process manager creates processes in a hidden service desktop where
you cannot interact with any GUI.

• -log This option is a short cut to selecting the MPE wrapper library
to log the MPI application. When the job finishes there will be a .clog2
file created that can be viewed in Jumpshot.

• -logon Prompt for user credentials to launch the job under.

• -machinefile filename Use the specified file to get host names to
launch processes on. Hosts are selected from this file in a round robin
fashion. One host is specified per line. Extra options can be speci-
fied. The number of desired processes to launch on a specific host can
be specified with a colon followed by a number after the host name:
hostname:n. This is usefull for multi-CPU hosts. If you want to spec-
ify the interface that should be used for MPI communication to the

9 RUNTIME ENVIRONMENT 17

host you can add the -ifhn flag. A sample machinefile is provided
below for reference.

Comment line

Run two procs on hostname1

hostname1:2

Run four procs on hostname2 but use 192.168.1.100

as the interface

hostname2:4 -ifhn 192.168.1.100

The interface can also be specified using the ifhn= option. The fol-
lowing line is valid in a machinefile.

#Using ifhn= option to specify the interface

hostname1:2 ifhn=192.168.1.101

• -map drive:\\host\share Specify a network mapped drive to create
on the hosts before launching the processes. The mapping will be
removed when the processes exit. This option can be specified multiple
times.

• -mapall Specify that all network mapped drives created by the user
executing mpiexec command will be created on hosts before launching
the processes. The mappings will be removed when the processes exit.

• -n x or -np x Specify the number of processes to launch.

• -nopm This flag is used in conjunction with the -rsh flag. With this
flag specified there need not be any smpd process manager running on
any of the nodes used in the job. mpiexec provides the PMI interface
and the remote shell command is used to start the processes. Using
these flags allows jobs to be started without any process managers run-
ning but the MPI-2 dynamic process functions like MPI Comm spawn
are consequently not available.

• -noprompt Prevent mpiexec for prompting for information. If user
credentials are needed to launch the processes mpiexec usually prompts
for this information but this flag causes an error to be printed out
instead.

• -p port Short version of the -port option.

9 RUNTIME ENVIRONMENT 18

• -path search path Specify the search path used to locate executa-
bles. Separate multiple paths with semicolons. The path can be mixed
when using both Windows and Linux machines. For example: -path
c:\temp;/home/user is a valid search path.

• -phrase passphrase Specify the passphrase used to authenticate with
the smpd process managers.

• -plaintext Specify that user credentials should go over the wire un-
encrypted. This is required if both Linux and Windows machines are
used in the same job because the Linux machines cannot encrypt and
decrypt the data created by the Windows machines.

• -pmi server num processes or -pmiserver num processes This op-
tion specified by itself connects to the local smpd process manager
and starts a PMI service. This service is used by MPICH2 processes
to communicate connection information to each other. This option
is only good for a single MPICH2 job. The input parameter is the
number of processes in the job. mpiexec immediately outputs three
lines of data. The first line is the host name. The second line is the
port it is listening on and the third line is the name of the PMI KVS.
A process manager that can set environment variables and launch
processes but does not implement the PMI service can use this op-
tion to start jobs. Along with the other PMI environment variables
the process manager must set PMI HOST to the host name provided,
PMI PORT to the port provided and PMI KVS and PMI DOMAIN
to the KVS name provided. It is the responsibility of the process man-
ager to set the other environment variables correctly like PMI RANK
and PMI SIZE. See the document on the smpd PMI implementation
for a complete list of the environment variables. When the job is fin-
ished the PMI server will exit. This option can be executed in separate
command simultaneously so that multiple jobs can be executed at the
same time.

• -port port Specify the port where the smpd process manager is lis-
tening.

• -priority class[:level] Specify the priority class and optionally
the thread priority of the processes to be launched. The class can be
0,1,2,3, or 4 corresponding to idle, below, normal, above, and high.
The level can be 0,1,2,3,4, or 5 corresponding to idle, lowest, below,
normal, above, highest. The default is 2:3.

9 RUNTIME ENVIRONMENT 19

• -pwdfile filename Specify a file to read the user name and password
from. The user name should be on the first line and the password on
the second line.

• -quiet abort Use this flag to prevent extensive abort messages to
appear. Instead the job will simply exit with minimal error output.

• -register [-user n] Encrypt a user name and password into the
Windows registry so that it can be automatically retrieved by mpiexec
to launch processes with. If you specify a user index then you can save
more than one set of credentials. The index should be a positive non-
zero number and does not need to be consecutive.

• -remove [-user n] Remove the encrypted credential data from the
Registry. If multiple entries are saved then use the -user option to
specify which entry to remove. -user all can be specified to delete
all entries.

• -remove job job name [-host hostname] Remove a job object on
the local or specified host. Any processes running under this job will
be terminated. Administrator privileges are required to execute this
command.

• -rsh or -ssh Use the remote shell command to execute the processes
in the job instead of using the smpd process manager. The default
command is “ssh -x” no matter whether -rsh or -ssh is used. If this
is the only flag specified then an smpd process manager must be run-
ning on the local host where mpiexec is executed. mpiexec contacts
the local smpd process to start a PMI service required by the MPI job
and then starts the processes using the remote shell command. On
the target machines the application “env” must be available since it is
used to set the appropriate environment variables and then start the
application. The remote shell command can be changed using the en-
vironment variable MPIEXEC RSH. Any command can be used that
takes a host name and then everything after that as the user com-
mand to be launched. Note that you need to specify a fully qualified
file name of the executable when running your job with the -rsh op-
tion. If you like to use relative paths set the working directory for the
job using the -wdir option of mpiexec.

• -smpdfile filename Specify the location of the smpd configuration

9 RUNTIME ENVIRONMENT 20

file. The default is ~/.smpd. This is a Unix only option. Under Win-
dows the settings are stored in the Windows Registry.

• -timeout seconds Specify the maximum number of seconds the job
is allowed to run. At the end of the timeout period, if the job has not
already exited then all processes will be killed.

• -user n Specify which encrypted credentials to retrieve from the Reg-
istry. The corresponding entry must have been previously saved using
the -register -user n option.

• -validate [-user n] [-host hostname]Validate that the saved cre-
dentials can be used to launch a process on the local or specified host.
If more that one credentials has been saved then the -user option can
be used to select which user credentials to use.

• -verbose Output trace data for mpiexec. Only useful for debugging.

• -wdir drive:\my\working\directory -wdir and -dir are synonyms.

• -whoami Print out the current user name in the format that mpiexec
and smpd expect it to be. This is useful for users who use a screen
name that is different from their user name.

9.7 SMPD process manager options

This section describes some of the options for the smpd process manager.

smpd.exe runs as a service under Windows. This is required so that
it can start processes under multiple user credentials. Only services have
the privileges necessary to log on users and start processes for them. Since
this is a privileged operation administrator rights are required to install the
smpd service. This is what the default installer package does.

But smpd can be run in other ways for debugging or single user use.

If you have smpd.exe installed first execute smpd.exe -stop to stop the
service.

Then you can run it by hand for single user mode or for debugging. The
flag for debugging single user mode is -d debug output level.

If you run it like this you will get full trace output:

9 RUNTIME ENVIRONMENT 21

smpd.exe -d

If you run it like this you will get no output except for errors:

smpd.exe -d 0

Here are all the options to smpd.exe:

• -install or -regserver Install the smpd service. Requires admin-
istrator privileges.

• -remove or -uninstall or -unregserver Uninstall the smpd ser-
vice. Requires administrator privileges.

• -start Start the smpd service. Requires administrator privileges.

• -stop Stop the smpd service. Requires administrator privileges.

• -restart Stop and restart the smpd service. Requires administrator
privileges.

• -register spn Register the Service Prinicipal Name for the smpd ser-
vice of the local machine on the domain controller. Requires DOMAIN
administrator privileges. This is used in conjunction with passwordless
SSPI authentication described in the section on security.

• -remove spn Remove the Service Prinicipal Name from the domain
controller for the smpd service of the local machine. Requires DO-
MAIN administrator privileges.

• -traceon filename [hostA hostB ...] Turn on the trace logging
of the smpd service on the local or specified hosts and set the output
to the specified file. The file location must be available on the local
drive of each of the hosts. It cannot be located on a remote machine.

• -traceoff [hostA hostB ...] Turn off the trace logging of the
smpd service on the local or specified hosts.

• -port n Listen on the specified port number. If this option is not
specified then smpd listens on the default port (8676).

• -anyport Listen on any port assigned by the OS. smpd immediately
prints out the port that it has been assigned.

9 RUNTIME ENVIRONMENT 22

• -phrase passphrase Use the specified passphrase to authenticate
connections to the smpd either by mpiexec or another smpd process.

• -getphrase Prompt the user to input the passphrase. This is useful
if you don’t want to specify the phrase on the command line.

• -noprompt Don’t prompt the user for input. If there is missing infor-
mation, print an error and exit.

• -set option value Set the smpd option to the specified value. For
example, smpd -set logfile c:\temp\smpd.log will set the log file
to the specified file name. smpd -set log yes will turn trace logging
on and smpd -set log no will turn it off.

• -get option Print out the value of the specified smpd option.

• -hosts Print the hosts that mpiexec and this smpd will use to launch
processes on. If the list is empty then processes will be launched on
the local host only.

• -sethosts hostA hostB ... Set the hosts option to a list of hosts
that mpiexec and smpd will use to launch processes on.

• -d [level] or -debug [level] Start the smpd in debug or single
user mode with the optionally specified amount of output. For exam-
ple, smpd -d will start the smpd will lots of trace output and smpd -d

0 will start the smpd with no output except for errors.

• -s Only available on Unix systems. This option starts the smpd in
single user daemon mode for the current user.

• -smpdfile filename On Unix systems the smpd options are stored
in a file that is readable only by the current user (chmod 600). This
file stores the same information that would be stored in the Windows
registry like the port and passphrase. The default file is named ~/.smpd

if this option is not specified.

• -shutdown Shutdown a running smpd that was started by smpd -s or
smpd -d.

• -printprocs On a Windows machine you can run smpd -printprocs

and it will print out the processes started and stopped by smpd on the
current host. The format of the output is +/-pid cmd. Plus means
a process was started and minus means the process has exited. The

9 RUNTIME ENVIRONMENT 23

process id is specified next and then the rest of the line is the command
that was launched.

• -enum or -enumerate Print the smpd options set on the local host.

• -version Print the smpd version and exit.

• -status [-host hostname] Print the status of the smpd on the local
or specified host.

• -help Print a brief summary of the options to smpd.

9.8 Debugging jobs by starting them manually

This section describes how to start a job by hand without the use of a process
manager so the job can be stepped through with a debugger.

You can launch an MPICH2 job by hand if you set the minimum required
environment variables for each process and then start the processes yourself
(or in a debugger).

Here is a script that sets the environment variables so that a job can be
started on the local machine: The file is called setmpi2.bat

if ‘‘%1’’ == ‘‘’’ goto HELP

if ‘‘%2’’ == ‘‘’’ goto HELP

set PMI_ROOT_HOST=%COMPUTERNAME%

set PMI_ROOT_PORT=9222

set PMI_ROOT_LOCAL=1

set PMI_RANK=%1

set PMI_SIZE=%2

set PMI_KVS=mpich2

goto DONE

:HELP

REM usage: setmpi2 rank size

:DONE

For example, to debug a two process job bring up two separate command
prompts. In the first prompt execute setmpi2.bat 0 2 and in the second
prompt execute setmpi2.bat 1 2. Then run your application always start-
ing the root process first. The root process must call MPI Init before any

9 RUNTIME ENVIRONMENT 24

of the other processes because it is the process that listens on the port
specifed by the environment variable PMI ROOT PORT. Simply execute
myapp.exe from each command prompt to run your job. Or better yet run
each process in a debugger. If you have the Microsoft developer studio in-
stalled you can run the following from each command prompt: devenv.exe
myapp.exe. This will bring up a debugger for each process. Then you can
step through each process and debug it. Remember that the first process
must call MPI Init before any of the rest of the processes do. You can restart
the processes at any time as long as you restart all of them.

The script can be modified to launch on multiple hosts by changing the
line:

set PMI_ROOT_HOST=%COMPUTERNAME%

to set the variable to the hostname where the root process will be started
instead of the local host name.

The limitation of this method of starting processes is that MPI-2 spawn-
ing operations are not supported. If your application calls MPI Comm spawn
it will produce an error.

9.9 Debugging jobs using MPI Cluster Debugger

This section describes how to debug MPI jobs using the MPI Cluster Debug-
ger available with Visual Studio suites. Follow the steps below to debug your
MPI application (myapp.exe) locally on your machine using Visual Studio
2010

1. Select Visual Studio application project properties (Select “myapp.exe
properties” item from the “Project” menu)

2. In Debugging section (Select “Configuration Properties” and then
select “Debugging” category), select “MPI Cluster debugger” as the
debugger to launch from the drop down menu.

3. Set the “Run Environment” item to “localhost/NUM PROCS TO LAUNCH”
(e.g. localhost/3 to launch 3 MPI processes)

4. Set the “Application Arguments” item, if your MPI application has
any arguments (To specify input to your application redirect it from
a text file)

9 RUNTIME ENVIRONMENT 25

5. Set the “MPIExec Command” item to point to MPICH2’s mpiexec (C:\Program
Files\MPICH2\bin\mpiexec.exe)

6. Click OK to submit the project property changes

7. Insert break points in the Visual Studio explorer window

8. Press F5 to start debugging your code. Note that multiple windows
pop up showing a view of the processes launched and the correspond-
ing call stacks. The debugger automatically switches between MPI
processes, if required, when it hits a breakpoint.

9.10 Environment variables

This section describes the environment variables used by MPICH2 and
smpd.

• MPICH ABORT ON ERROR Call abort() when an error happens instead of
returning an error and calling MPID Abort. useful for unix where
calling abort() creates a core file.

• MPICH PRINT ERROR STACK Print the entire error stack when an error
occurs (currently this is the default)

• MPICH CHOP ERROR STACK Split the error stack output at the character
position specified. A value of 79 would cause carriage returns to be
inserted after the 79th character.

• MPICH WARNINGS Print runtime warnings (unmatched messages at MPI Finalize,
unreleased resources, etc)

• MPICH SOCKET BUFFER SIZE socket buffer size

• MPICH SOCKET RBUFFER SIZE socket receive buffer size

• MPICH SOCKET SBUFFER SIZE socket send buffer size

• MPICH SOCKET NUM PREPOSTED ACCEPTS number of accepts posted for
MPIDU Sock listen

• MPICH PORT RANGE Range of ports to use for sockets: min..max or
min,max

9 RUNTIME ENVIRONMENT 26

• MPICH INTERFACE HOSTNAME hostname to use to connect sockets

• MPICH NETMASK bitmask to select an ip subnet: ip/numbits, ie 192.0.0.0/8

• MPIEXEC TIMEOUT job timeout in seconds

• MPIEXEC LOCALONLY launch job processes on the local machine only

• MPIEXEC NOPROMPT Don’t prompt for user input for missing informa-
tion, print an error instead.

• MPIEXEC SMPD PORT Connect to smpd on the specified port.

The following two only affect mpiexec for smpd if -rsh is on the com-
mand line:

• MPIEXEC RSH rsh command to use, default is “ssh -x”

• MPIEXEC RSH NO ESCAPE create an rsh command compatible with Cyg-
win’s ssh

• MPICH SPN Service Principal Name used for passwordless authentica-
tion

• SMPD DBG OUTPUT Print debugging output

• SMPD DBG LOG FILENAME name of logfile to send output to

• SMPD MAX LOG FILE SIZE maximum number of bytes the logfile can
grow to before it is truncated

• MPICH DBG OUTPUT stdout, memlog or file. determines where debug-
ging output goes

• MPI DLL NAME name of the dll that contains the MPI and PMPI inter-
faces

• MPI DLL PATH path of the dll that contains the MPI and PMPI inter-
faces

• MPICH2 CHANNEL short name of the channel used to create the full
name of the MPI dll (ie. ib becomes mpich2ib.dll)

• MPI WRAP DLL NAME name of the dll that contains only the MPI inter-
face, not the PMPI interface

• MPICH TRMEM INITZERO used by the memory tracing package

9 RUNTIME ENVIRONMENT 27

• MPICH TRMEM VALIDATE used by the memory tracing package

• MPITEST DEBUG used by the test suite

• MPITEST VERBOSE used by the test suite

• PATH used by smpd to search for executables under Unix.

SMPD options specified on the command line can also be specified in
the environment by prefixing SMPD OPTION to the option name and saving
it as an environment variable.

• SMPD OPTION APP PATH

• SMPD OPTION LOGFILE

• SMPD OPTION NOCACHE

• SMPD OPTION PHRASE

• SMPD OPTION SSPI PROTECT

• SMPD OPTION MAX LOGFILE SIZE

• SMPD OPTION PLAINTEXT

• SMPD OPTION PORT

• SMPD OPTION TIMEOUT

• SMPD OPTION EXITCODES

• SMPD OPTION PRIORITY

• SMPD OPTION LOCALONLY

• SMPD OPTION NOPROMPT

• SMPD OPTION CHANNEL

• SMPD OPTION HOSTS

• SMPD OPTION DELEGATE

• SMPD OPTION INTERNODE CHANNEL

9 RUNTIME ENVIRONMENT 28

• SMPD OPTION LOG

• SMPD OPTION NO DYNAMIC HOSTS

Variables to control debugging output when enabled:

• MPICH DBG

• MPICH DBG CLASS

• MPICH DBG FILENAME

• MPICH DBG LEVEL

• MPICH DBG OUTPUT

• MPICH DBG RANK

• MPICH DEBUG ITEM

The following variables affect the MPE logging library:

• MPE LOGFILE PREFIX name of the clog file to create without the ex-
tension

• MPE DELETE LOCALFILE true,false - delete or not the local clog file

• MPE LOG OVERHEAD I think this one adds an event to the clog files
representing the time it takes to write a clog buffer to disk

• CLOG BLOCK SIZE number of bytes in a clog block

• CLOG BUFFERED BLOCKS number of blocks

• MPE CLOCKS SYNC yes/no - synchronize clocks

directories to store temporary files:

• MPE TMPDIR

• TMPDIR

• TMP

• TEMP

9 RUNTIME ENVIRONMENT 29

PMI environment variables created by smpd are described in the smpd
documentation:

• PMI DLL NAME name of the PMI dll to load (replaces the default smpd
functions)

• PMI NAMEPUB KVS name of the key-val-space where MPI service names
are stored for MPI Lookup name()

• PMI ROOT HOST

• PMI ROOT PORT

• PMI ROOT LOCAL

• PMI SPAWN

• PMI KVS

• PMI DOMAIN

• PMI RANK

• PMI SIZE

• PMI CLIQUE

• PMI APPNUM

• PMI SMPD ID

• PMI SMPD KEY

• PMI SMPD FD

• PMI HOST

• PMI PORT

• PMI APPNUM

Used by the process managers other than smpd:

• MPIEXEC DEBUG

• MPIEXEC MACHINES PATH

9 RUNTIME ENVIRONMENT 30

• MPIEXEC PORTRANGE

• MPIEXEC PREFIX STDERR

• MPIEXEC PREFIX STDOUT

• MPIEXEC REMSHELL

• MPIEXEC USE PORT

9.11 Compiling

This section describes how to set up a project to compile an MPICH2 ap-
plication using Visual Studio 2005 and Visual Studio 6.0.

9.11.1 Visual Studio 6.0

Visual C++ 6.0 cannot handle multiple functions with the same type signa-
ture that only differ in their return type. So you must define HAVE NO VARIABLE RETURN TYPE SUPPORT

in your project.

1. Create a project and add your source files.

2. Bring up the settings for the project by hitting Alt F7. Select the Pre-
processor Category from the C/C++ tab. Enter HAVE NO VARIABLE RETURN TYPE SUPPORT

into the Preprocessor box. Enter C:\Program Files\MPICH2\include
into the “Additional include directories” box.

3. Select the Input Category from the Link tab. Add cxx.lib and
mpi.lib to the Object/library modules box. Add C:\Program Files\MPICH2\lib
to the “Additional library path” box.

4. Compile your application.

9.11.2 Visual Studio 2005

You can use the example projects provided with Visual Studio 2005 and use
it as a guide to create your own projects.

1. Create a project and add your source files.

9 RUNTIME ENVIRONMENT 31

2. Bring up the properties dialog for your project by right clicking the
project name and selecting Properties.

3. Navigate to Configuration Properties::C/C++::General

4. Add C:\Program Files\MPICH2\include to the “Additional Include
Directories” box.

5. Navigate to Configuration Properties::Linker::General

6. Add C:\Program Files\MPICH2\lib to the “Aditional Library Direc-
tories” box.

7. Navigate to Configuration Properties::Linker::Input

8. Add cxx.lib and mpi.lib and fmpich2.lib to the “Additional De-
pendencies” box. If your application is a C application then it only
needs mpi.lib. If it is a C++ application then it needs both cxx.lib

and mpi.lib. If it is a Fortran application then it only needs one of the
fmpich2[s,g].lib libraries. The fortran library comes in three flavors
fmpich2.lib, fmpich2s.lib and fmpich2s.lib. fmpich2.lib con-
tains all uppercase symbols and uses the C calling convention like this:
MPI INIT. fmpich2s.lib contains all uppercase symbols and uses the
stdcall calling convention like this: MPI INIT@4. fmpich2g.lib con-
tains all lowercase symbols with double underscores and the C calling
convention like this: mpi init . Add the library that matches your
Fortran compiler.

9. Compile your application.

9.11.3 Cygwin and MinGW GNU compilers

You can compile your MPI programs using gcc/g++/g77/gfortran from
Cygwin or MinGW using the MPICH2 header files/libraries installed with
MPICH2 on windows. Compile using the header files in C:\Program Files\MPICH2\include
and link using the libs, lib*.a, in C:\Program Files\MPICH2\lib. Note that
you should use the “-localroot” option when running programs compiled us-
ing gcc/g++ from Cygwin.

9 RUNTIME ENVIRONMENT 32

9.12 Performance Analysis

MPICH2 includes the Multi-Processing Environment (MPE), which is a
suite of performance analysis tools comprising profiling libraries, utility pro-
grams, a set of graphical tools, and a collective checking library.

The first set of tools to be used with user MPI programs is profiling
libraries which provide a collection of routines that create log files. These
log files can be created manually by inserting MPE calls in the MPI pro-
gram, or automatically by linking with the appropriate MPE libraries, or
by combining the above two methods. Currently, MPE offers the following
four profiling libraries.

1. Tracing Library: Traces all MPI calls. Each MPI call is preceded by a
line that contains the rank in MPI COMM WORLD of the calling process,
and followed by another line indicating that the call has completed.
Most send and receive routines also indicate the values of count, tag,
and partner (destination for sends, source for receives). Output is to
standard output.

2. Animation Libraries: A simple form of real-time program animation
that requires X window routines (Currently not available on windows).

3. Logging Libraries: The most useful and widely used profiling libraries
in MPE. These libraries form the basis for generating log files from
user MPI programs. Several different log file formats are available in
MPE. The default log file format is CLOG2. It is a low overhead
logging format, a simple collection of single timestamp events. The
old format ALOG, which is not being developed for years, is not dis-
tributed here. The powerful visualization format is SLOG-2, stands
for Scalable LOGfile format version II, which is a total redesign of the
original SLOG format. SLOG-2 allows for much improved scalability
for visualization purpose. A CLOG2 file can be easily converted to
SLOG-2 file through the new SLOG-2 viewer, Jumpshot-4.

4. Collective and datatype checking library: An argument consistency
checking library for MPI collective calls. It checks for datatype, root,
and various argument consistency in MPI collective calls (Currently
not available on Windows).

The set of utility programs in MPE includes log format converter (e.g.

9 RUNTIME ENVIRONMENT 33

clogTOslog2) and logfile viewer and convertor (e.g. Jumpshot). These new
tools, clog2TOslog2 and Jumpshot (Jumpshot-4) replace old tools, clog2slog,
slog print and logviewer (i.e. Jumpshot-2 and Jumpshot-3).

9.12.1 Tracing MPI calls using the MPIEXEC Wrapper

A developer can trace MPI calls by using the tracing functionality of the
mpiexec wrapper (wmpiexec.exe). A step by step process is given below.

1. Launch the mpiexec wrapper application (wmpiexec.exe).

2. After launching the mpiexec wrapper, select the application that you
would like to run and select the number of processes. Now click on the
“more options” checkbox to show the extended options for mpiexec.

3. Check the “produce clog2 file” checkbox so that the clog2 file is gen-
erated when the application is run.

4. Check “run in an separate window” checkbox to enable your program
to run in a separate window (for user interaction).

5. Run your application by clicking on the “Execute” button.

6. Once the application exits, click on the “Jumpshot” button to launch
Jumpshot (the logfile viewer).

7. Open your logfile (the default name of the logfile is <APPLICATION

NAME>.clog2) using Jumpshot. Jumpshot will ask for converting the
logfile to slog2 format. Click “Convert” button in Jumpshot to convert
your logfile to slog2 format.

8. Now click on “OK” button in Jumpshot to view the logfile.

9.12.2 Tracing MPI calls from the command line

1. Run your application using the “-log” option to the mpiexec command.

2. Launch Jumpshot using the java command. (eg: java -jar "c:\Program
Files\MPICH2\bin\jumpshot.jar")

3. Follow the steps mentioned in the previous section to convert the logfile
to slog2 format and view the log.

9 RUNTIME ENVIRONMENT 34

9.12.3 Customizing logfiles

In addition to using the predefined MPE logging libraries to log all MPI
calls, MPE logging calls can be inserted into the user’s MPI program to
define and log states. These states are called user-defined states. States
may be nested, allowing one to define a state describing a user routine that
contains several MPI calls, and display both the user-defined state and the
MPI operations contained within it.

The simplest way to insert user-defined states is as follows:

1. Get handles from MPE logging library. MPE Log get state eventIDs

must be used to get unique event IDs (MPE logging handles). This
is important if you are writing a library that uses the MPE logging
routines from the MPE system. Hardwiring the eventIDs is considered
a bad idea since it may cause eventID confict and so the practice isn’t
supported. The older MPE library provides MPE Log get event number,
which is still being supported but has been deprecated; users are
strongly urged to use MPE Log get state eventIDs instead.

2. Set the logged state’s characteristics. MPE Describe state sets the
name and color of the states.

3. Log the events of the logged states. MPE Log event is called twice to
log the user-defined states.

Below is a simple example that uses the three steps outlined above.

int eventID_begin, eventID_end;

...

MPE_Log_get_state_eventIDs(&eventID_begin, &eventID_end);

...

MPE_Describe_state(eventID_begin, eventID_end, "Multiplication", "red");

...

MyAmult(Matrix m, Vector v)

{

/* Log the start event along with the size of the matrix */

MPE_Log_event(eventID_begin, 0, NULL);

... Amult code, including MPI calls ...

MPE_Log_event(eventID_end, 0, NULL);

}

9 RUNTIME ENVIRONMENT 35

The logfile generated by this code will have the MPI routines nested
within the routine MyAmult.

Besides user-defined state, MPE2 also provides support for user-defined
events, which can be defined through use of MPE Log get solo eventID and
MPE Describe event. For more details, see cpilog.c.

For undefined user-defined state (where the corresponding MPE Describe state

has not been issued), the new Jumpshot (Jumpshot-4) may display the leg-
end name as “UnknownType-INDEX” where INDEX is the internal MPE
category index.

An example program, cpilog.c, is provided in the “examples” directory
of your MPICH2 installation. This program can be used as a reference for
customizing logfiles.

	Introduction
	Build machine
	Test machine
	Software
	Packages

	Building MPICH2
	Visual Studio automated 32bit build
	Automated build from the source distribution
	Building without Fortran

	Platform SDK builds

	Distributing MPICH2 builds
	Testing MPICH2
	Testing from scratch
	Testing a built mpich2 directory
	Testing an existing installation

	Development issues
	Runtime environment
	User credentials
	MPICH2 channel selection
	MPI apps with GUI
	Security
	Firewalls
	MPIEXEC options
	SMPD process manager options
	Debugging jobs by starting them manually
	Debugging jobs using MPI Cluster Debugger
	Environment variables
	Compiling
	Visual Studio 6.0
	Visual Studio 2005
	Cygwin and MinGW GNU compilers

	Performance Analysis
	Tracing MPI calls using the MPIEXEC Wrapper
	Tracing MPI calls from the command line
	Customizing logfiles

