
MPICH User’s Guide∗

Version 3.3

Mathematics and Computer Science Division

Argonne National Laboratory

Abdelhalim Amer Pavan Balaji Wesley Bland
William Gropp Yanfei Guo Rob Latham Huiwei Lu

Lena Oden Antonio J. Peña Ken Raffenetti
Sangmin Seo Min Si Rajeev Thakur Junchao Zhang

Xin Zhao

November 21, 2018

∗This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Sci-
DAC Program, Office of Science, U.S. Department of Energy, under Contract DE-AC02-
06CH11357.

1

Contents

1 Introduction 1

2 Getting Started with MPICH 1

2.1 Default Runtime Environment 1

2.2 Starting Parallel Jobs . 1

2.3 Command-Line Arguments in Fortran 1

3 Quick Start 2

4 Compiling and Linking 3

4.1 Special Issues for C++ . 3

4.2 Special Issues for Fortran . 3

5 Running Programs with mpiexec 4

5.1 Standard mpiexec . 4

5.2 Extensions for All Process Management Environments 5

5.3 mpiexec Extensions for the Hydra Process Manager 5

5.4 Extensions for the gforker Process Management Environment 5

5.4.1 mpiexec arguments for gforker 5

5.5 Restrictions of the remshell Process Management Environment 7

5.6 Using MPICH with SLURM and PBS 8

5.6.1 OSC mpiexec . 8

6 Specification of Implementation Details 8

6.1 MPI Error Handlers for Communicators 8

7 Debugging 9

i

7.1 TotalView . 9

8 Checkpointing 10

8.1 Configuring for checkpointing 10

8.2 Taking checkpoints . 11

9 Other Tools Provided with MPICH 11

A Frequently Asked Questions 13

ii

1 INTRODUCTION 1

1 Introduction

This manual assumes that MPICH has already been installed. For instruc-
tions on how to install MPICH, see the MPICH Installer’s Guide, or the
README in the top-level MPICH directory. This manual explains how to
compile, link, and run MPI applications, and use certain tools that come
with MPICH. This is a preliminary version and some sections are not com-
plete yet. However, there should be enough here to get you started with
MPICH.

2 Getting Started with MPICH

MPICH is a high-performance and widely portable implementation of the
MPI Standard, designed to implement all of MPI-1, MPI-2, and MPI-3 (in-
cluding dynamic process management, one-sided operations, parallel I/O,
and other extensions). The MPICH Installer’s Guide provides some infor-
mation on MPICH with respect to configuring and installing it. Details on
compiling, linking, and running MPI programs are described below.

2.1 Default Runtime Environment

MPICH provides a separation of process management and communication.
The default runtime environment in MPICH is called Hydra. Other process
managers are also available.

2.2 Starting Parallel Jobs

MPICH implements mpiexec and all of its standard arguments, together
with some extensions. See Section 5.1 for standard arguments to mpiexec

and various subsections of Section 5 for extensions particular to various
process management systems.

2.3 Command-Line Arguments in Fortran

MPICH1 (more precisely MPICH1’s mpirun) required access to command
line arguments in all application programs, including Fortran ones, and

3 QUICK START 2

MPICH1’s configure devoted some effort to finding the libraries that con-
tained the right versions of iargc and getarg and including those libraries
with which the mpifort script linked MPI programs. Since MPICH does not
require access to command line arguments to applications, these functions
are optional, and configure does nothing special with them. If you need
them in your applications, you will have to ensure that they are available in
the Fortran environment you are using.

3 Quick Start

To use MPICH, you will have to know the directory where MPICH has been
installed. (Either you installed it there yourself, or your systems adminis-
trator has installed it. One place to look in this case might be /usr/local.
If MPICH has not yet been installed, see the MPICH Installer’s Guide.)
We suggest that you put the bin subdirectory of that directory into your
path. This will give you access to assorted MPICH commands to compile,
link, and run your programs conveniently. Other commands in this directory
manage parts of the run-time environment and execute tools.

One of the first commands you might run is mpichversion to find out
the exact version and configuration of MPICH you are working with. Some
of the material in this manual depends on just what version of MPICH you
are using and how it was configured at installation time.

You should now be able to run an MPI program. Let us assume that the
directory where MPICH has been installed is /home/you/mpich-installed,
and that you have added that directory to your path, using

setenv PATH /home/you/mpich-installed/bin:$PATH

for tcsh and csh, or

export PATH=/home/you/mpich-installed/bin:$PATH

for bash or sh. Then to run an MPI program, albeit only on one machine,
you can do:

cd /home/you/mpich-installed/examples

mpiexec -n 3 ./cpi

4 COMPILING AND LINKING 3

Details for these commands are provided below, but if you can success-
fully execute them here, then you have a correctly installed MPICH and
have run an MPI program.

4 Compiling and Linking

A convenient way to compile and link your program is by using scripts
that use the same compiler that MPICH was built with. These are mpicc,
mpicxx, and mpifort, for C, C++, and Fortran programs, respectively. If
any of these commands are missing, it means that MPICH was configured
without support for that particular language.

4.1 Special Issues for C++

Some users may get error messages such as

SEEK_SET is #defined but must not be for the C++ binding of MPI

The problem is that both stdio.h and the MPI C++ interface use SEEK SET,
SEEK CUR, and SEEK END. This is really a bug in the MPI standard. You can
try adding

#undef SEEK_SET

#undef SEEK_END

#undef SEEK_CUR

before mpi.h is included, or add the definition

-DMPICH_IGNORE_CXX_SEEK

to the command line (this will cause the MPI versions of SEEK SET etc. to
be skipped).

4.2 Special Issues for Fortran

MPICH provides two kinds of support for Fortran programs. For Fortran 77
programmers, the file mpif.h provides the definitions of the MPI constants

5 RUNNING PROGRAMS WITH MPIEXEC 4

such as MPI COMM WORLD. Fortran 90 programmers should use the MPImodule
instead; this provides all of the definitions as well as interface definitions for
many of the MPI functions. However, this MPI module does not provide
full Fortran 90 support; in particular, interfaces for the routines, such as
MPI Send, that take “choice” arguments are not provided.

5 Running Programs with mpiexec

The MPI Standard describes mpiexec as a suggested way to run MPI pro-
grams. MPICH implements the mpiexec standard, and also provides some
extensions.

5.1 Standard mpiexec

Here we describe the standard mpiexec arguments from the MPI Stan-
dard [1]. To run a program with ’n’ processes on your local machine, you
can use:

mpiexec -n <number> ./a.out

To test that you can run an ’n’ process job on multiple nodes:

mpiexec -f machinefile -n <number> ./a.out

The ’machinefile’ is of the form:

host1

host2:2

host3:4 # Random comments

host4:1

’host1’, ’host2’, ’host3’ and ’host4’ are the hostnames of the machines
you want to run the job on. The ’:2’, ’:4’, ’:1’ segments depict the number
of processes you want to run on each node. If nothing is specified, ’:1’ is
assumed.

More details on interacting with Hydra can be found at http://wiki.
mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager

http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager

5 RUNNING PROGRAMS WITH MPIEXEC 5

5.2 Extensions for All Process Management Environments

Some mpiexec arguments are specific to particular communication sub-
systems (“devices”) or process management environments (“process man-
agers”). Our intention is to make all arguments as uniform as possible
across devices and process managers. For the time being we will document
these separately.

5.3 mpiexec Extensions for the Hydra Process Manager

MPICH provides a number of process management systems. Hydra is the
default process manager in MPICH. More details on Hydra and its exten-
sions to mpiexec can be found at http://wiki.mpich.org/mpich/index.
php/Using_the_Hydra_Process_Manager

5.4 Extensions for the gforker Process Management Envi-
ronment

gforker is a process management system for starting processes on a sin-
gle machine, so called because the MPI processes are simply forked from
the mpiexec process. This process manager supports programs that use
MPI Comm spawn and the other dynamic process routines, but does not sup-
port the use of the dynamic process routines from programs that are not
started with mpiexec. The gforker process manager is primarily intended
as a debugging aid as it simplifies development and testing of MPI programs
on a single node or processor.

5.4.1 mpiexec arguments for gforker

In addition to the standard mpiexec command-line arguments, the gforker
mpiexec supports the following options:

-np <num> A synonym for the standard -n argument

-env <name> <value> Set the environment variable <name> to <value> for
the processes being run by mpiexec.

http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager

5 RUNNING PROGRAMS WITH MPIEXEC 6

-envnone Pass no environment variables (other than ones specified with
other -env or -genv arguments) to the processes being run by mpiexec.
By default, all environment variables are provided to each MPI process
(rationale: principle of least surprise for the user)

-envlist <list> Pass the listed environment variables (names separated
by commas), with their current values, to the processes being run by
mpiexec.

-genv <name> <value> The

-genv options have the same meaning as their corresponding -env version,
except they apply to all executables, not just the current executable (in
the case that the colon syntax is used to specify multiple execuables).

-genvnone Like -envnone, but for all executables

-genvlist <list> Like -envlist, but for all executables

-usize <n> Specify the value returned for the value of the attribute MPI UNIVERSE SIZE.

-l Label standard out and standard error (stdout and stderr) with the
rank of the process

-maxtime <n> Set a timelimit of <n> seconds.

-exitinfo Provide more information on the reason each process exited if
there is an abnormal exit

In addition to the commandline argments, the gforker mpiexec provides
a number of environment variables that can be used to control the behavior
of mpiexec:

MPIEXEC TIMEOUT Maximum running time in seconds. mpiexec will ter-
minate MPI programs that take longer than the value specified by
MPIEXEC TIMEOUT.

MPIEXEC UNIVERSE SIZE Set the universe size

MPIEXEC PORT RANGE Set the range of ports that mpiexec will use in com-
municating with the processes that it starts. The format of this is
<low>:<high>. For example, to specify any port between 10000 and
10100, use 10000:10100.

5 RUNNING PROGRAMS WITH MPIEXEC 7

MPICH PORT RANGE Has the same meaning as MPIEXEC PORT RANGE and is
used if MPIEXEC PORT RANGE is not set.

MPIEXEC PREFIX DEFAULT If this environment variable is set, output to stan-
dard output is prefixed by the rank in MPI COMM WORLD of the process
and output to standard error is prefixed by the rank and the text
(err); both are followed by an angle bracket (>). If this variable is
not set, there is no prefix.

MPIEXEC PREFIX STDOUT Set the prefix used for lines sent to standard out-
put. A %d is replaced with the rank in MPI COMM WORLD; a %w is re-
placed with an indication of which MPI COMM WORLD in MPI jobs that
involve multiple MPI COMM WORLDs (e.g., ones that use MPI Comm spawn

or MPI Comm connect).

MPIEXEC PREFIX STDERR Like MPIEXEC PREFIX STDOUT, but for standard er-
ror.

MPIEXEC STDOUTBUF Sets the buffering mode for standard output. Valid
values are NONE (no buffering), LINE (buffering by lines), and BLOCK

(buffering by blocks of characters; the size of the block is implemen-
tation defined). The default is NONE.

MPIEXEC STDERRBUF Like MPIEXEC STDOUTBUF, but for standard error.

5.5 Restrictions of the remshell Process Management Envi-
ronment

The remshell “process manager” provides a very simple version of mpiexec
that makes use of the secure shell command (ssh) to start processes on a
collection of machines. As this is intended primarily as an illustration of
how to build a version of mpiexec that works with other process managers,
it does not implement all of the features of the other mpiexec programs
described in this document. In particular, it ignores the command line
options that control the environment variables given to the MPI programs.
It does support the same output labeling features provided by the gforker
version of mpiexec. However, this version of mpiexec can be used much like
the mpirun for the ch p4 device in MPICH-1 to run programs on a collection
of machines that allow remote shells. A file by the name of machines should
contain the names of machines on which processes can be run, one machine
name per line. There must be enough machines listed to satisfy the requested

6 SPECIFICATION OF IMPLEMENTATION DETAILS 8

number of processes; you can list the same machine name multiple times if
necessary.

5.6 Using MPICH with SLURM and PBS

There are multiple ways of using MPICH with SLURM or PBS. Hydra
provides native support for both SLURM and PBS, and is likely the easiest
way to use MPICH on these systems (see the Hydra documentation above
for more details).

Alternatively, SLURM also provides compatibility with MPICH’s in-
ternal process management interface. To use this, you need to configure
MPICH with SLURM support, and then use the srun job launching utility
provided by SLURM.

For PBS, MPICH jobs can be launched in two ways: (i) use Hydra’s
mpiexec with the appropriate options corresponding to PBS, or (ii) using
the OSC mpiexec.

5.6.1 OSC mpiexec

Pete Wyckoff from the Ohio Supercomputer Center provides a alternate util-
ity called OSC mpiexec to launch MPICH jobs on PBS systems. More infor-
mation about this can be found here: http://www.osc.edu/~pw/mpiexec

6 Specification of Implementation Details

The MPI Standard defines a number of areas where a library is free to
define its own specific behavior as long as such behavior is documented
appropriately. This section provides that documentation for MPICH where
necessary.

6.1 MPI Error Handlers for Communicators

In Section 8.3.1 (Error Handlers for Communicators) of the MPI-3.0 Stan-
dard [2], MPI defines an error handler callback function as

http://www.osc.edu/~pw/mpiexec

7 DEBUGGING 9

typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);

Where the first argument is the communicator in use, the second argu-
ment is the error code to be returned by the MPI routine that raised the
error, and the remaining arguments to be implementation specific “varargs”.
MPICH does not provide any arguments as part of this list. So a callback
function being provided to MPICH is sufficient if the header is

typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *);

7 Debugging

Debugging parallel programs is notoriously difficult. Here we describe a
number of approaches, some of which depend on the exact version of MPICH
you are using.

7.1 TotalView

MPICH supports use of the TotalView debugger from Etnus. If MPICH has
been configured to enable debugging with TotalView then one can debug an
MPI program using

totalview -a mpiexec -a -n 3 cpi

You will get a popup window from TotalView asking whether you want to
start the job in a stopped state. If so, when the TotalView window appears,
you may see assembly code in the source window. Click on main in the stack
window (upper left) to see the source of the main function. TotalView will
show that the program (all processes) are stopped in the call to MPI Init.

If you have TotalView 8.1.0 or later, you can use a TotalView feature
called indirect launch with MPICH. Invoke TotalView as:

totalview <program> -a <program args>

8 CHECKPOINTING 10

Then select the Process/Startup Parameters command. Choose the Par-
allel tab in the resulting dialog box and choose MPICH as the parallel sys-
tem. Then set the number of tasks using the Tasks field and enter other
needed mpiexec arguments into the Additional Starter Arguments field.

8 Checkpointing

MPICH supports checkpoint/rollback fault tolerance when used with the
Hydra process manager. Currently only the BLCR checkpointing library
is supported. BLCR needs to be installed separately. Below we describe
how to enable the feature in MPICH and how to use it. This information
can also be found on the MPICH Wiki: http://wiki.mpich.org/mpich/

index.php/Checkpointing

8.1 Configuring for checkpointing

First, you need to have BLCR version 0.8.2 installed on your machine. If
it’s installed in the default system location, add the following two options
to your configure command:

--enable-checkpointing --with-hydra-ckpointlib=blcr

If BLCR is not installed in the default system location, you’ll need to
tell MPICH’s configure where to find it. You might also need to set the
LD LIBRARY PATH environment variable so that BLCR’s shared libraries can
be found. In this case add the following options to your configure command:

--enable-checkpointing --with-hydra-ckpointlib=blcr

--with-blcr=BLCR_INSTALL_DIR LD_LIBRARY_PATH=BLCR_INSTALL_DIR/lib

where BLCR INSTALL DIR is the directory where BLCR has been installed
(whatever was specified in --prefix when BLCR was configured). Note,
checkpointing is only supported with the Hydra process manager. Hyrda
will used by default, unless you choose something else with the --with-pm=
configure option.

After it’s configured, compile as usual (e.g., make; make install).

http://wiki.mpich.org/mpich/index.php/Checkpointing
http://wiki.mpich.org/mpich/index.php/Checkpointing

9 OTHER TOOLS PROVIDED WITH MPICH 11

8.2 Taking checkpoints

To use checkpointing, include the -ckpointlib option for mpiexec to spec-
ify the checkpointing library to use and -ckpoint-prefix to specify the
directory where the checkpoint images should be written:

shell$ mpiexec -ckpointlib blcr \

-ckpoint-prefix /home/buntinas/ckpts/app.ckpoint \

-f hosts -n 4 ./app

While the application is running, the user can request for a checkpoint at
any time by sending a SIGUSR1 signal to mpiexec. You can also automati-
cally checkpoint the application at regular intervals using the mpiexec option
-ckpoint-interval to specify the number of seconds between checkpoints:

shell$ mpiexec -ckpointlib blcr \

-ckpoint-prefix /home/buntinas/ckpts/app.ckpoint \

-ckpoint-interval 3600 -f hosts -n 4 ./app

The checkpoint/restart parameters can also be controlled with the envi-
ronment variables HYDRA CKPOINTLIB, HYDRA CKPOINT PREFIX and HYDRA

CKPOINT INTERVAL.

Each checkpoint generates one file per node. Note that checkpoints for
all processes on a node will be stored in the same file. Each time a new
checkpoint is taken an additional set of files are created. The files are num-
bered by the checkpoint number. This allows the application to be restarted
from checkpoints other than the most recent. The checkpoint number can
be specified with the -ckpoint-num parameter. To restart a process:

shell$ mpiexec -ckpointlib blcr \

-ckpoint-prefix /home/buntinas/ckpts/app.ckpoint \

-ckpoint-num 5 -f hosts -n 4

Note that by default, the process will be restarted from the first check-
point, so in most cases, the checkpoint number should be specified.

9 Other Tools Provided with MPICH

MPICH also includes a test suite for MPI functionality; this suite may be
found in the mpich/test/mpi source directory and can be run with the

9 OTHER TOOLS PROVIDED WITH MPICH 12

command make testing. This test suite should work with any MPI imple-
mentation, not just MPICH.

A FREQUENTLY ASKED QUESTIONS 13

A Frequently Asked Questions

The frequently asked questions are maintained online here:http://wiki.
mpich.org/mpich/index.php/Frequently_Asked_Questions

References

[1] Message Passing Interface Forum. MPI2: A Message Passing Interface
standard. International Journal of High Performance Computing Appli-
cations, 12(1–2):1–299, 1998.

[2] Message Passing Interface Forum. MPI: A Message Passing Interface
Standard, version 3.0. Technical report, 2012.

http://wiki.mpich.org/mpich/index.php/Frequently_Asked_Questions
http://wiki.mpich.org/mpich/index.php/Frequently_Asked_Questions

	Introduction
	Getting Started with MPICH
	Default Runtime Environment
	Starting Parallel Jobs
	Command-Line Arguments in Fortran

	Quick Start
	Compiling and Linking
	Special Issues for C++
	Special Issues for Fortran

	Running Programs with mpiexec
	Standard mpiexec
	Extensions for All Process Management Environments
	mpiexec Extensions for the Hydra Process Manager
	Extensions for the gforker Process Management Environment
	mpiexec arguments for gforker

	Restrictions of the remshell Process Management Environment
	Using MPICH with SLURM and PBS
	OSC mpiexec

	Specification of Implementation Details
	MPI Error Handlers for Communicators

	Debugging
	TotalView

	Checkpointing
	Configuring for checkpointing
	Taking checkpoints

	Other Tools Provided with MPICH
	Frequently Asked Questions

